A Semiparametric Intraday GARCH Model


  • PeterMalec

برای دانلود باید عضویت طلایی داشته باشید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Semiparametric Intraday Garch Model

We propose a multiplicative component model for intraday volatility. The model consists of a seasonality factor, as well as a semiparametric and parametric component. The former captures the well-documented intraday seasonality of volatility, while the latter two account for the impact of the state of the limit order book, utilizing an additive structure, and fluctuations around this state by m...

متن کامل

Semiparametric Multivariate GARCH Model∗

To capture the missed information in the standardized errors by parametric multivariate generalized autoregressive conditional heteroskedasticity (MV-GARCH) model, we propose a new semiparametric MV-GARCH (SM-GARCH) model. This SM-GARCH model is a twostep model: firstly estimating parametric MV-GARCH model, then using nonparametric skills to model the conditional covariance matrix of the standa...

متن کامل

A Coupled Component Garch Model for Intraday and Overnight Volatility

We propose a semi-parametric coupled component GARCH model for intraday and overnight volatility that allows the two periods to have different properties. To capture the very heavy tails of overnight returns, we adopt a dynamic conditional score model with t innovations. We propose a several step estimation procedure that captures the nonparametric slowly moving components by kernel estimation ...

متن کامل

Semiparametric Multivariate Garch Models

Estimation of multivariate GARCH models is usually carried out by quasi maximum likelihood (QMLE), for which recently consistency and asymptotic normality have been proven under quite general conditions. However, there are to date no results on the efficiency loss of QMLE if the true innovation distribution is not multinormal. We investigate this issue by suggesting a nonparametric estimation o...

متن کامل

Bayesian Semiparametric GARCH Models

This paper aims to investigate a Bayesian sampling approach to parameter estimation in the semiparametric GARCH model with an unknown conditional error density, which we approximate by a mixture of Gaussian densities centered at individual errors and scaled by a common standard deviation. This mixture density has the form of a kernel density estimator of the errors with its bandwidth being the ...

متن کامل

ذخیره در منابع من

  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دسترسی به متن کامل این مقاله و 23 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

Article info

Journal name: SSRN Electronic Journal

Year: 2016

ISSN: 1556-5068

DOI: 10.2139/ssrn.2785615