Challenges in modeling disturbances’ effects on terrestrial carbon cycling
نویسندگان
چکیده
منابع مشابه
Importance of vegetation dynamics for future terrestrial carbon cycling
Terrestrial ecosystems currently sequester about one third of anthropogenic CO2 emissions each year, an important ecosystem service that dampens climate change. The future fate of this net uptake of CO2 by land based ecosystems is highly uncertain.Most ecosystemmodels used to predict the future terrestrial carbon cycle share a common architecture, whereby carbon that enters the system as net pr...
متن کاملTwentieth-Century Droughts and Their Impacts on Terrestrial Carbon Cycling in China
Midlatitude regions experienced frequent droughts during the twentieth century, but their impacts on terrestrial carbon balance are unclear. This paper presents a century-scale study of drought effects on the carbon balance of terrestrial ecosystems in China. The authors first characterized the severe extended droughts over the period 1901–2002 using the Palmer drought severity index and then e...
متن کاملImpacts of large-scale climatic disturbances on the terrestrial carbon cycle
BACKGROUND The amount of carbon dioxide in the atmosphere steadily increases as a consequence of anthropogenic emissions but with large interannual variability caused by the terrestrial biosphere. These variations in the CO2 growth rate are caused by large-scale climate anomalies but the relative contributions of vegetation growth and soil decomposition is uncertain. We use a biogeochemical mod...
متن کاملLand use effects on terrestrial carbon sources and sinks
Current and past land use practices are critical in determining the distribution and size of global terrestrial carbon (C) sources and sinks. Although fossil fuel emissions dominate the anthropogenic perturbation of the global C cycle, land use still drives the largest portion of anthropogenic emissions in a number of tropical regions of Asia. The size of the emission flux owing to land use cha...
متن کاملLong-term perspectives on terrestrial and aquatic carbon cycling from palaeolimnology
Lakes are active processors and collectors of carbon (C) and thus recognized as quantitatively important within the terrestrial C cycle. Better integration of palaeolimnology (lake sediment core analyses) with limnological C budgeting approaches has the potential to enhance understanding of lacustrine C processing and sequestration. Palaeolimnology simultaneously assimilates materials from acro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Precedings
سال: 2009
ISSN: 1756-0357
DOI: 10.1038/npre.2009.4095