Chemically Optimizing Operational Efficiency of Molecular Rotary Motors

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approaches to rotary molecular motors*

Interest has recently intensified in the search for molecular motors and actuators capable of delivering useful work to nanodevices under the control of electrochemical or photochemical power sources. While many of these man-made molecular machines are designed to deliver rectilinear motion, very few are proposed for the controlled delivery of rotary motion on the time scale characteristic of i...

متن کامل

Unidirectional rotary motion in achiral molecular motors.

Control of the direction of motion is an essential feature of biological rotary motors and results from the intrinsic chirality of the amino acids from which the motors are made. In synthetic autonomous light-driven rotary motors, point chirality is transferred to helical chirality, and this governs their unidirectional rotation. However, achieving directional rotary motion in an achiral molecu...

متن کامل

A redesign of light-driven rotary molecular motors.

Structural modification of unidirectional light-driven rotary molecular motors in which the naphthalene moieties are exchanged for substituted phenyl moieties are reported. This redesign provides an additional tool to control the speed of the motors, and should enable the design and synthesis of more complex systems.

متن کامل

The efficiency of the molecular motors

Molecular motors convert chemical energy into mechanical work while operating in an environment dominated by Brownian motion. The aim of this paper is to explore the flow of energy between the molecular motors and its surroundings, in particular, its efficiency. Based on the Fokker-Planck equation with either N or infinite chemical states, we find that the energy efficiency of the molecular mot...

متن کامل

Efficiency of molecular motors at maximum power

Molecular motors transduce chemical energy obtained from hydrolizing ATP into mechanical work exerted against an external force. We calculate their efficiency at maximum power output for two simple generic models and show that the qualitative behaviour depends crucially on the position of the transition state or, equivalently, on the load distribution factor. Specifically, we find a transition ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the American Chemical Society

سال: 2014

ISSN: 0002-7863,1520-5126

DOI: 10.1021/ja5041368