Clairaut Pointwise Slant Submersion from Locally Product Riemannian Manifolds

نویسندگان

چکیده

The goal of the present paper is to analyze some geometric features Clairaut pointwise slant submersions whose total manifold a locally product Riemannian manifold. We describe from onto study by providing consequent which defines geodesics on space this type submersions. also give non-trivial example manifolds are Riemannian.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-slant Pseudo-riemannian Submersions from Indefinite Almost Contact 3-structure Manifolds onto Pseudo-riemannian Manifolds

In this paper, we introduce the notion of a semi-slant pseudoRiemannian submersion from an indefinite almost contact 3-structure manifold onto a pseudo-Riemannian manifold. We investigate the geometry of foliations determined by horizontal and vertical distributions and provide a non-trivial example. We also find a necessary and sufficient condition for a semi-slant submersion to be totally geo...

متن کامل

Warped Product Submanifolds of Riemannian Product Manifolds

and Applied Analysis 3 where TX and NX are the tangential and normal components of FX, respectively, and for V ∈ T⊥M,

متن کامل

Locally adaptive density estimation on Riemannian manifolds

In this paper, we consider kernel type estimator with variable bandwidth when the random variables belong in a Riemannian manifolds. We study asymptotic properties such as the consistency and the asymptotic distribution. A simulation study is also considered to evaluate the performance of the proposal. Finally, to illustrate the potential applications of the proposed estimator, we analyse two r...

متن کامل

Lower Bounds of the Dirac Eigenvalues on Compact Riemannian Spin Manifolds with Locally Product Structure

We study some similarities between almost product Riemannian structures and almost Hermitian structures. Inspired by the similarities, we prove lower eigenvalue estimates for the Dirac operator on compact Riemannian spin manifolds with locally product structures. We also provide some examples (limiting manifolds) for the limiting case of the estimates. MSC(2000): 53C25, 53C27, 58B20

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International electronic journal of geometry

سال: 2023

ISSN: ['1307-5624']

DOI: https://doi.org/10.36890/iejg.1108703