Commutators of BMO functions and singular integral operators with non-smooth kernels
نویسندگان
چکیده
منابع مشابه
Commutators of integral operators with variable kernels on Hardy spaces
Abstract. Let TΩ,α (0 ≤ α < n) be the singular and fractional integrals with variable kernel Ω(x,z), and [b,TΩ,α ] be the commutator generated by TΩ,α and a Lipschitz function b. In this paper, the authors study the boundedness of [b,TΩ,α ] on the Hardy spaces, under some assumptions such as the Lr-Dini condition. Similar results and the weak type estimates at the end-point cases are also given...
متن کاملBilinear decompositions and commutators of singular integral operators
Let b be aBMO-function. It is well-known that the linear commutator [b, T ] of a Calderón-Zygmund operator T does not, in general, map continuously H(R) into L(R). However, Pérez showed that if H(R) is replaced by a suitable atomic subspace H b(R ) then the commutator is continuous from H b(R ) into L(R). In this paper, we find the largest subspace H b (R ) such that all commutators of Calderón...
متن کاملSome BMO estimates for vector-valued multilinear singular integral operators
Let b ∈ BMO(Rn) and T be the Calderón–Zygmund singular integral operator. The commutator [b,T ] generated by b and T is defined as [b,T ]( f )(x) = b(x)T ( f )(x)−T (b f )(x). By using a classical result of Coifman et al [8], we know that the commutator [b,T ] is bounded on Lp(Rn) for 1 < p < ∞. Chanillo [1] proves a similar result when T is replaced by the fractional integral operator. However...
متن کاملConvolution Calderón-Zygmund singular integral operators with rough kernels
A survey of known results in the theory of convolution type Calderón-Zygmund singular integral operators with rough kernels is given. Some recent progress is discussed. A list of remaining open questions is presented.
متن کاملHigh-Order Quadratures for Integral Operators with Singular Kernels
A numerical integration method that has rapid convergence for integrands with known singularities is presented. Based on endpoint corrections to the trapezoidal rule, the quadratures are suited for the discretization of a variety of integral equations encountered in mathematical physics. The quadratures are based on a technique introduced by Rokhlin (Computers Math. Applic. 20, pp. 51-62, 1990)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 2003
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972700033669