Commutators of BMO functions and singular integral operators with non-smooth kernels

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commutators of integral operators with variable kernels on Hardy spaces

Abstract. Let TΩ,α (0 ≤ α < n) be the singular and fractional integrals with variable kernel Ω(x,z), and [b,TΩ,α ] be the commutator generated by TΩ,α and a Lipschitz function b. In this paper, the authors study the boundedness of [b,TΩ,α ] on the Hardy spaces, under some assumptions such as the Lr-Dini condition. Similar results and the weak type estimates at the end-point cases are also given...

متن کامل

Bilinear decompositions and commutators of singular integral operators

Let b be aBMO-function. It is well-known that the linear commutator [b, T ] of a Calderón-Zygmund operator T does not, in general, map continuously H(R) into L(R). However, Pérez showed that if H(R) is replaced by a suitable atomic subspace H b(R ) then the commutator is continuous from H b(R ) into L(R). In this paper, we find the largest subspace H b (R ) such that all commutators of Calderón...

متن کامل

Some BMO estimates for vector-valued multilinear singular integral operators

Let b ∈ BMO(Rn) and T be the Calderón–Zygmund singular integral operator. The commutator [b,T ] generated by b and T is defined as [b,T ]( f )(x) = b(x)T ( f )(x)−T (b f )(x). By using a classical result of Coifman et al [8], we know that the commutator [b,T ] is bounded on Lp(Rn) for 1 < p < ∞. Chanillo [1] proves a similar result when T is replaced by the fractional integral operator. However...

متن کامل

Convolution Calderón-Zygmund singular integral operators with rough kernels

A survey of known results in the theory of convolution type Calderón-Zygmund singular integral operators with rough kernels is given. Some recent progress is discussed. A list of remaining open questions is presented.

متن کامل

High-Order Quadratures for Integral Operators with Singular Kernels

A numerical integration method that has rapid convergence for integrands with known singularities is presented. Based on endpoint corrections to the trapezoidal rule, the quadratures are suited for the discretization of a variety of integral equations encountered in mathematical physics. The quadratures are based on a technique introduced by Rokhlin (Computers Math. Applic. 20, pp. 51-62, 1990)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 2003

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700033669