Containment relations in split graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Containment relations in split graphs

A graph containment problem is to decide whether one graph can be modified into some other graph by using a number of specified graph operations. We consider edge deletions, edge contractions, vertex deletions and vertex dissolutions as possible graph operations permitted. By allowing any combination of these four operations we capture the following ten problems: testing on (induced) minors, (i...

متن کامل

max-cut and Containment Relations in Graphs

We study max-cut in classes of graphs defined by forbidding a single graph as a subgraph, induced subgraph, or minor. For the first two containment relations, we prove dichotomy theorems. For the minor order, we show how to solve max-cut in polynomial time for the class obtained by forbidding a graph with crossing number at most one (this generalizes a known result for K5-minor-free graphs) and...

متن کامل

Pebbling in Split Graphs

Finding the pebbling number of a graph is harder than NP-complete (Π 2 complete, to be precise). However, for many families of graphs there are formulas or polynomial algorithms for computing pebbling numbers; for example, complete graphs, products of paths (including cubes), trees, cycles, diameter two graphs, and more. Moreover, graphs having minimum pebbling number are called Class 0, and ma...

متن کامل

Split-critical and uniquely split-colorable graphs

The split-coloring problem is a generalized vertex coloring problem where we partition the vertices into a minimum number of split graphs. In this paper, we study some notions which are extensively studied for the usual vertex coloring and the cocoloring problem from the point of view of split-coloring, such as criticality and the uniqueness of the minimum split-coloring. We discuss some proper...

متن کامل

Annotating Spatial Containment Relations Between Events

A significant amount of spatial information in textual documents is hidden within the relationship between events. While humans have an intuitive understanding of these relationships that allow us to recover an object’s or event’s location, currently no annotated data exists to allow automatic discovery of spatial containment relations between events. We present our process for building such a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2012

ISSN: 0166-218X

DOI: 10.1016/j.dam.2011.10.004