Flow prediction in the lower Yellow River based on CEEMDAN-BILSTM coupled model

نویسندگان

چکیده

Abstract As one of the important hydrological elements rivers, flow is great significance to development and utilization water resources ecological environment. Based on excellent nonlinear processing capability CEEMDAN advantages BILSTM in time-series data modeling, a coupled CEEMDAN-BILSTM model constructed for prediction, i-month flows from 1951 2016 are used predict 2017 2021. The results show that predicts trend more closely with actual variation, minimum relative error 0.56 maximum 9.48, which maintained within 10%, deterministic coefficients all greater than 0.9, so prediction accuracy high. month i 5 years was picked up by monthly predictions 66 consecutive years, provides new way thinking about river flow.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the effects of changing roughness on the flow structure in the bends

flow in natural river bends is a complex and turbulent phenomenon which affects the scour and sedimentations and causes an irregular bed topography on the bed. for the reason, the flow hydralics and the parameters which affect the flow to be studied and understand. in this study the effect of bed and wall roughness using the software fluent discussed in a sharp 90-degree flume bend with 40.3cm ...

mortality forecasting based on lee-carter model

over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...

15 صفحه اول

River Flow Simulation Using SWAT Physically Based Model in Barandouzchay of Urmia Lake River Basin

Nowadays, there are too many models in the world for simulation of hydrological processes, such as the SWAT physically based model. The SWAT model is a continuous and physically based hydrologic model that is the smallest unit in this model is Hydrologic Response Unit, and all hydrological processes are simulated in each of these units. This model can simulate runoff, sedimentation, erosion and...

متن کامل

A BiLSTM-based System for Cross-lingual Pronoun Prediction

We describe the Uppsala system for the 2017 DiscoMT shared task on crosslingual pronoun prediction. The system is based on a lower layer of BiLSTMs reading the source and target sentences respectively. Classification is based on the BiLSTM representation of the source and target positions for the pronouns. In addition we enrich our system with dependency representations from an external parser ...

متن کامل

A neural network model for short term river flow prediction

This paper presents a model using rain gauge and weather radar data to predict the runoff of a small alpine catchment in Austria. The gapless spatial coverage of the radar is important to detect small convective shower cells, but managing such a huge amount of data is a demanding task for an artificial neural network. The method described here uses statistical analysis to reduce the amount of d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Water Science & Technology: Water Supply

سال: 2022

ISSN: ['1606-9749', '1607-0798']

DOI: https://doi.org/10.2166/ws.2022.426