Function of exponential type belonging to $L^{p}$ on the real line

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pairs of Function Spaces and Exponential Dichotomy on the Real Line

We provide a complete diagram of the relation between the admissibility of pairs of Banach function spaces and the exponential dichotomy of evolution families on the real line. We prove that if W ∈ H R and V ∈ T R are two Banach function spaces with the property that either W ∈ W R or V ∈ V R , then the admissibility of the pair W R, X , V R, X implies the existence of the exponential dichotomy...

متن کامل

Exponential Dichotomy for Evolution Families on the Real Line

We give necessary and sufficient conditions for uniform exponential dichotomy of evolution families in terms of the admissibility of the pair (Lp(R,X),Lq(R,X)). We show that the admissibility of the pair (Lp(R,X),Lq(R,X)) is equivalent to the uniform exponential dichotomy of an evolution family if and only if p ≥ q. As applications we obtain characterizations for uniform exponential dichotomy o...

متن کامل

Asymmetric Bimodal Exponential Power Distribution on the Real Line

The asymmetric bimodal exponential power (ABEP) distribution is an extension of the generalized gamma distribution to the real line via adding two parameters that fit the shape of peakedness in bimodality on the real line. The special values of peakedness parameters of the distribution are a combination of half Laplace and half normal distributions on the real line. The distribution has two par...

متن کامل

EXPONENTIAL DICHOTOMY OF DIFFERENCE EQUATIONS IN lp -PHASE SPACES ON THE HALF-LINE

For a sequence of bounded linear operators {An}n=0 on a Banach space X , we investigate the characterization of exponential dichotomy of the difference equations vn+1 = Anvn. We characterize the exponential dichotomy of difference equations in terms of the existence of solutions to the equations vn+1 = Anvn + fn in lp spaces (1 ≤ p <∞). Then we apply the results to study the robustness of expon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tohoku Mathematical Journal

سال: 1967

ISSN: 0040-8735

DOI: 10.2748/tmj/1178243243