Global Stability and Hopf Bifurcation for Gause-Type Predator-Prey System

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Stability and Hopf Bifurcation for Gause-Type Predator-Prey System

A class of three-dimensional Gause-type predator-prey model is considered. Firstly, local stability of equilibrium indicating the extinction of top-predator is obtained. Meanwhile, we construct a Lyapunov function, which is an extension of the Lyapunov functions constructed by Hsu for predator-prey system 2005 , to give the global stability of the equilibrium. Secondly, we analyze the stability...

متن کامل

Stability and Hopf Bifurcation Analysis for a Gause-Type Predator-Prey System with Multiple Delays

and Applied Analysis 3 Letting λ = iω 1 (ω 1 > 0) be a root of (11), then we have m 1 ω 1 sin τ 1 ω 1 = p 2 ω 2 1 − n 0 , m 1 ω 1 cos τ 1 ω 1 = ω 3 1 − n 1 ω 1 . (12)

متن کامل

Hopf Bifurcation Analysis on General Gause-Type Predator-Prey Models with Delay

and Applied Analysis 3 a stable equilibrium to be unstable and induce bifurcations as well as periodic oscillations. Under the hypothesis that prey x t has a gestation in 1.1 , we modify it to be the following one: dx t dt xg x − yp x − τ , dy t dt y −h ep x ] − zqy, dz t dt z −s mqy, 1.3 where τ is the time of gestation. The purpose of current work is to analyze the effect of delay on the dyna...

متن کامل

Global stability and Hopf bifurcation in a delayed diffusive Leslie-Gower predator-prey System

In this paper, we consider a delayed diffusive Leslie–Gower predator–prey system with homogeneous Neumann boundary conditions. The stability/instability of the coexistence equilibrium and associated Hopf bifurcation are investigated by analyzing the characteristic equations. Furthermore, using the upper and lower solutions method, we give a sufficient condition on parameters so that the coexist...

متن کامل

Global Hopf Bifurcation on Two-Delays Leslie-Gower Predator-Prey System with a Prey Refuge

A modified Leslie-Gower predator-prey system with two delays is investigated. By choosing τ 1 and τ 2 as bifurcation parameters, we show that the Hopf bifurcations occur when time delay crosses some critical values. Moreover, we derive the equation describing the flow on the center manifold; then we give the formula for determining the direction of the Hopf bifurcation and the stability of bifu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics

سال: 2012

ISSN: 1110-757X,1687-0042

DOI: 10.1155/2012/260798