Gold Price Forecasting Using LSTM, Bi-LSTM and GRU
نویسندگان
چکیده
Due to the multifactorial and non-linear nature of gold market, it is difficult predict price. The price affected by many external factors, such as market environment, economic crises, oil increases, tax advantages interest rates. Therefore, multivariate models can better than univariate models. This study investigated effects price, crude exchange rate index, stock indicators between 2001 2021. Models created using LSTM, Bi-LSTM GRU methods were evaluated lowest Root Mean Square Error (RMSE), Absolute Percent (MAPE) (MAE) metrics. LSTM model performed best, with 3.48 MAPE, 61,728 RMSE 48.85 MAE values.
منابع مشابه
High Order LSTM/GRU
RNN is a powerful model for sequence data but suffers from gradient vanishing and explosion, thus difficult to be trained to capture long range dependences. But people have proposed LSTM and GRU, which try to model the differences between adjacent data frame rather than the data frame itself. By doing so, it allows the error to back propagate throw longer time without vanishing. Also instead of...
متن کاملHouse Price Prediction Using LSTM
In this paper, we use the house price data ranging from January 2004 to October 2016 to predict the average house price of November and December in 2016 for each district in Beijing, Shanghai, Guangzhou and Shenzhen. We apply Autoregressive Integrated Moving Average model to generate the baseline while LSTM networks to build prediction model. These algorithms are compared in terms of Mean Squar...
متن کاملIncremental Parsing with Minimal Features Using Bi-Directional LSTM
Recently, neural network approaches for parsing have largely automated the combination of individual features, but still rely on (often a larger number of) atomic features created from human linguistic intuition, and potentially omitting important global context. To further reduce feature engineering to the bare minimum, we use bi-directional LSTM sentence representations to model a parser stat...
متن کاملپیشبینی میزان دبی متوسط ماهیانۀ رودخانۀ کارون با استفاده از روش ترکیبی GRU-LSTM
مدل سازی دبی رودخانه در مدیریت منابع آب و مدیریت ریسک از اهمیت بالایی برخوردار است. این امر در مناطق کوهستانی اهمیت بیشتری پیدا میکند زیرا بیشتر جمعیتهای پاییندست منطقه، وابستگی زیادی به کشاورزی و فعالیتهای تجاری مانند تولید برق دارند. در این زمینه، در سالهای اخیر، مدلهای یادگیری ماشینی به دلیل دقت بالا در پیشبینی از طریق یادگیری به-صورت جعبه سیاه مورد توجه زیادی قرار گرفتهاند. از این ...
متن کاملForecasting Economics and Financial Time Series: ARIMA vs. LSTM
Forecasting time series data is an important subject in economics, business, and finance. Traditionally, there are several techniques to effectively forecast the next lag of time series data such as univariate Autoregressive (AR), univariate Moving Average (MA), Simple Exponential Smoothing (SES), and more notably Autoregressive Integrated Moving Average (ARIMA) with its many variations. In par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Europan journal of science and technology
سال: 2021
ISSN: ['2148-2683']
DOI: https://doi.org/10.31590/ejosat.959405