HASTANE H?ZMETLER? SEKTÖRÜNÜN CRITIC TEMELL? TOPSIS YÖNTEM? ?LE F?NANSAL PERFORMANSININ DE?ERLEND?R?LMES?
نویسندگان
چکیده
Karma??k organizasyonlar olarak hastanelerin finansal performanslar?n? etkileyen birçok faktör bulundu?u için performans de?erlendirme süreçlerinde birden fazla faktörün dikkate al?nd??? çok kriterli karar verme yöntemlerinin kullan?lmas? gerekli hale gelmektedir. Bu çal??mada, hastane hizmetleri sektörünün 2009-20019 dönemindeki performans?n?n yöntemleri olan CRITIC temelli TOPSIS yöntemi ile de?erlendirilmesi ve her bir y?l?n s?ralamas?n?n yap?lmas? amaçlanm??t?r. Türkiye Cumhuriyet Merkez Bankas? taraf?ndan yay?mlanan sektör bilanço gelir tablosu verileri kullan?larak, performans?n likidite, devir h?z?, yap? karl?l?k kategorileri aç?s?ndan de?erlendirilmesini sa?layan 12 oran hesaplanm??t?r. Finansal oranlar?n a??rl?klar? belirlenmi? belirlenen a??rl?klar yönteminde kullan?lm??t?r. genel performans? tek puana dönü?türülmü? puanlar?na göre y?llar?n s?ralamas? yap?lm??t?r. analizler Microsoft Excel program? kullan?larak gerçekle?tirilmi?tir. Çal??ma sonucunda, puanlar? y?llar itibar?yla yükseli? dü?ü?lerin ya?and???, ayr?ca en yüksek 2009 (0,963) y?l?na dü?ük 2011 (0,115) ait oldu?u tespit edilmi?tir
منابع مشابه
A critic-critic architecture to combine reinforcement and supervised learnings
In real life, learning is greatly speeded-up by the intervention of a teacher who gives examples, or shows, how to perform a certain task. In all this abstract, we let apart structural simpli cations of the problem by the designer which to not deal explicitely with learning. The intervention of the teacher can be realized in di erent ways: verbal explanation, demonstration, guidance, shaping th...
متن کاملHierarchical Actor-Critic
The ability to learn at different resolutions in time may help overcome one of the main challenges in deep reinforcement learning — sample efficiency. Hierarchical agents that operate at different levels of temporal abstraction can learn tasks more quickly because they can divide the work of learning behaviors among multiple policies and can also explore the environment at a higher level. In th...
متن کاملThe Eigenoption-Critic Framework
Eigenoptions (EOs) have been recently introduced as a promising idea for generating a diverse set of options through the graph Laplacian, having been shown to allow efficient exploration Machado et al. [2017a]. Despite its first initial promising results, a couple of issues in current algorithms limit its application, namely: 1) EO methods require two separate steps (eigenoption discovery and r...
متن کاملProjected Natural Actor-Critic
Natural actor-critics form a popular class of policy search algorithms for finding locally optimal policies for Markov decision processes. In this paper we address a drawback of natural actor-critics that limits their real-world applicability—their lack of safety guarantees. We present a principled algorithm for performing natural gradient descent over a constrained domain. In the context of re...
متن کاملOff-Policy Actor-Critic
This paper presents the first actor-critic algorithm for off-policy reinforcement learning. Our algorithm is online and incremental, and its per-time-step complexity scales linearly with the number of learned weights. Previous work on actor-critic algorithms is limited to the on-policy setting and does not take advantage of the recent advances in offpolicy gradient temporal-difference learning....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pamukkale üniversitesi sosyal bilimler enstitüsü dergisi
سال: 2021
ISSN: ['1308-2922', '2147-6985']
DOI: https://doi.org/10.30794/pausbed.865686