Higher rank homogeneous Clifford structures

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher rank homogeneous Clifford structures

We give an upper bound for the rank r of homogeneous (even) Clifford structures on compact manifolds of non-vanishing Euler characteristic. More precisely, we show that if r = 2a · b with b odd, then r ≤ 9 for a = 0, r ≤ 10 for a = 1, r ≤ 12 for a = 2 and r ≤ 16 for a ≥ 3. Moreover, we describe the four limiting cases and show that there is exactly one solution in each case. 2010 Mathematics Su...

متن کامل

Homogeneous Clifford structures

We give an upper bound for the rank r of homogeneous (even) Clifford structures on compact manifolds of non-vanishing Euler characteristic. More precisely, we show that if r = 2 · b with b odd, then r ≤ 9 for a = 0, r ≤ 10 for a = 1, r ≤ 12 for a = 2 and r ≤ 16 for a ≥ 3. Moreover, we describe the four limiting cases and show that there is exactly one solution in each case. 2010 Mathematics Sub...

متن کامل

Higher rank Einstein solvmanifolds

In this paper we study the structure of standard Einstein solvmanifolds of arbitrary rank. Also the validity of a variational method for finding standard Einstein solvmanifolds is proved.

متن کامل

Joinings of Higher Rank Diagonalizable Actions on Locally Homogeneous Spaces

We classify joinings between a fairly general class of higher rank diagonalizable actions on locally homogeneous spaces. In particular, we classify joinings of the action of a maximal R-split torus on G/Γ, with G a simple Lie group of R-rank ≥ 2 and Γ < G a lattice. We deduce from this a classification of measurable factors of such actions, as well as certain equidistribution properties.

متن کامل

GENERALIZED HIGHER-RANK NUMERICAL RANGE

In this note, a generalization of higher rank numerical range isintroduced and some of its properties are investigated

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the London Mathematical Society

سال: 2012

ISSN: 0024-6107,1469-7750

DOI: 10.1112/jlms/jds061