Limit Cycles of a Class of Piecewise Smooth Liénard Systems

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Number of Limit Cycles in Piecewise-Linear Liénard Systems

In a previous paper [Tonnelier, 2002] we conjectured that a Liénard system of the form ẋ = p(x) − y, ẏ = x where p is piecewise linear on n + 1 intervals has up to 2n limit cycles. We construct here a general class of functions p satisfying this conjecture. Limit cycles are obtained from the bifurcation of the linear center.

متن کامل

Maximum amplitude of limit cycles in Liénard systems.

We establish sufficient criteria for the existence of a limit cycle in the Liénard system x[over ̇]=y-ɛF(x),y[over ̇]=-x, where F(x) is odd. In their simplest form the criteria lead to the result that, for all finite nonzero ɛ, the amplitude of the limit cycle is less than ρ and 0≤a≤ρ≤u, where F(a)=0 and ∫(0)(u)F(x)dx=0. We take the van der Pol oscillator as a specific example and establish that ...

متن کامل

Bifurcation Curves of Limit cycles in some LiéNard Systems

Liénard systems of the form ẍ + ǫf(x)ẋ + x = 0, with f(x) an even continous function, are considered. The bifurcation curves of limit cycles are calculated exactly in the weak (ǫ → 0) and in the strongly (ǫ → ∞) nonlinear regime in some examples. The number of limit cycles does not increase when ǫ increases from zero to infinity in all the cases analyzed.

متن کامل

Limit Cycles in Two Types of Symmetric LiÉnard Systems

Liénard systems and their generalized forms are classical and important models of nonlinear oscillators, and have been widely studied by mathematicians and scientists. The main problem considered is the maximal number of limit cycles that the system can have. In this paper, two types of symmetric polynomial Liénard systems are investigated and the maximal number of limit cycles bifurcating from...

متن کامل

Bifurcation of Limit Cycles of a Class of Piecewise Linear Differential Systems inR4 with Three Zones

We study the bifurcation of limit cycles from periodic orbits of a four-dimensional systemwhen the perturbation is piecewise linear with two switching boundaries. Our main result shows that when the parameter is sufficiently small at most, six limit cycles can bifurcate from periodic orbits in a class of asymmetric piecewise linear perturbed systems, and, at most, three limit cycles can bifurca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Bifurcation and Chaos

سال: 2016

ISSN: 0218-1274,1793-6551

DOI: 10.1142/s0218127416500097