Multi-peak solutions for logarithmic Schrödinger equations with potentials unbounded below

نویسندگان

چکیده

In this paper, we consider the following logarithmic Schrödinger equation$ \begin{equation*} -\varepsilon^2\Delta u + V(x)u = u\log u^2\ \ \text{in}\ {\mathbb R}^N, \end{equation*} $where $ \varepsilon>0 $, N\ge 1 V(x)\in C({\mathbb R}) is a continuous potential which can be unbounded below. By variational methods and penalized idea, show that problem has family of solutions u_{\varepsilon} concentrating at any finite given local minima V $. Our results generalize single peak case in [36] to multi-peak but penalization paper different.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potentials Unbounded Below ?

Continuous interpolates are described for classical dynamical systems defined by discrete time-steps. Functional conjugation methods play a central role in obtaining the interpolations. The interpolates correspond to particle motion in an underlying potential, V . Typically, V has no lower bound and can exhibit switchbacks wherein V changes form when turning points are encountered by the partic...

متن کامل

Time decay for solutions of Schrödinger equations with rough and time - dependent potentials

In this paper we establish dispersive estimates for solutions to the linear Schrödinger equation in three dimension 1 i ∂ t ψ − △ψ + V ψ = 0, ψ(s) = f (0.1) where V (t, x) is a time-dependent potential that satisfies the conditions sup t V (t, ·)

متن کامل

2 00 1 Time decay for solutions of Schrödinger equations with rough and time - dependent potentials

In this paper we establish dispersive estimates for solutions to the linear Schrödinger equation in three dimension 1 i ∂ t ψ − △ψ + V ψ = 0, ψ(s) = f (0.1) where V (t, x) is a time-dependent potential that satisfies the conditions sup t V (t, ·)

متن کامل

Existence and Multiplicity Results of Homoclinic Solutions for the DNLS Equations with Unbounded Potentials

and Applied Analysis 3 DNLS equation is one of the most important inherently discrete models, which models many phenomena in various areas of applications see 2–4 and reference therein . For example, in nonlinear optics, DNLS equation appears as a model of infinite wave guide arrays. In the past decade, the existence and properties of mobile discrete solitons/breathers in DNLS equations have be...

متن کامل

Standing Wave Solutions for the Discrete Coupled Nonlinear Schrödinger Equations with Unbounded Potentials

and Applied Analysis 3 Proof. First we show thatN ̸ = 0. From (15) and (16), we rewrite J (φ, ψ) = 1 2 ( 󵄩󵄩󵄩󵄩φ 󵄩󵄩󵄩󵄩 2 E1 − ω 1 󵄩󵄩󵄩󵄩φ 󵄩󵄩󵄩󵄩 2 l 2) + 1 2 ( 󵄩󵄩󵄩󵄩ψ 󵄩󵄩󵄩󵄩 2 E2 − ω 2 󵄩󵄩󵄩󵄩ψ 󵄩󵄩󵄩󵄩 2 l 2) − 1 4 ∑ n∈Z (a 1 φ 4 n + a 2 ψ 4 n + 2a 3 φ 2 n ψ 2 n ) , (18) I (φ, ψ) = 󵄩󵄩󵄩󵄩φ 󵄩󵄩󵄩󵄩 2 E1 − ω 1 󵄩󵄩󵄩󵄩φ 󵄩󵄩󵄩󵄩 2 l 2 + 󵄩󵄩󵄩󵄩ψ 󵄩󵄩󵄩󵄩 2 E2 − ω 2 󵄩󵄩󵄩󵄩ψ 󵄩󵄩󵄩󵄩 2 l 2 − ∑ n∈Z (a 1 φ 4 n + a 2 ψ 4 n + 2a 3 φ 2 n ψ 2 n )...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems

سال: 2023

ISSN: ['1553-5231', '1078-0947']

DOI: https://doi.org/10.3934/dcds.2023073