Necessary conditions for weighted mean convergence of Fourier series in orthogonal polynomials
نویسندگان
چکیده
منابع مشابه
2 9 Ja n 20 04 MEAN CONVERGENCE OF ORTHOGONAL FOURIER SERIES AND INTERPOLATING POLYNOMIALS
For a family of weight functions that include the general Jacobi weight functions as special cases, exact condition for the convergence of the Fourier orthogonal series in the weighted L space is given. The result is then used to establish a Marcinkiewicz-Zygmund type inequality and to study weighted mean convergence of various interpolating polynomials based on the zeros of the corresponding o...
متن کاملFourier Series of Orthogonal Polynomials
It follows from Bateman [4] page 213 after setting = 1 2 . It can also be found with slight modi cation in Bateman [5] page122. However we are not aware of any reference where explicit formulas for the Fourier coef cients for Gegenbauer, Jacobi, Laguerre and Hermite polynomials can be found. In this article we use known formulas for the connection coef cients relating an arbitrary orthogonal po...
متن کاملLocal property of absolute weighted mean summability of Fourier series
We improve and generalize a result on a local property of |T |k summability of factored Fourier series due to Sarıgöl [6].
متن کاملMean and Almost Everywhere Convergence of Fourier-neumann Series
Let Jμ denote the Bessel function of order μ. The functions xJα+β+2n+1(x 1/2), n = 0, 1, 2, . . . , form an orthogonal system in L2((0,∞), xα+βdx) when α+ β > −1. In this paper we analyze the range of p, α and β for which the Fourier series with respect to this system converges in the Lp((0,∞), xαdx)-norm. Also, we describe the space in which the span of the system is dense and we show some of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 1986
ISSN: 0021-9045
DOI: 10.1016/0021-9045(86)90068-7