Q-integral and Basic Analogue of I-function
نویسندگان
چکیده
منابع مشابه
q-Probability: I. Basic Discrete Distributions
q-analogs of classical formulae go back to Euler, q-binomial coefficients were defined by Gauss, and q-hypergeometric series were found by E. Heine in 1846. The q-analysis was developed by F. Jackson at the beginning of the 20th century, and the modern point of view subsumes most of the old developments into the subjects of Quantum Groups and Combinational Enumeration. The general philosophy of...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولq-EULER NUMBERS AND POLYNOMIALS ASSOCIATED WITH p-ADIC q-INTEGRALS AND BASIC q-ZETA FUNCTION
The purpose of this paper is to introduce the some interesting properties of q-Euler numbers and polynomials, cf. [1, 2, 5]. Finally, we will consider the “ sums of products of q-Euler polynomials”.
متن کاملA q - analogue of the type A Dunkl operator and integral kernel
A q-analogue of the type A Dunkl operator and integral kernel We introduce the q-analogue of the type A Dunkl operators, which are a set of degree–lowering operators on the space of polynomials in n variables. This allows the construction of raising/lowering operators with a simple action on non-symmetric Macdonald polynomials. A bilinear series of non-symmetric Macdonald polynomials is introdu...
متن کاملA q-ANALOGUE OF NON-STRICT MULTIPLE ZETA VALUES AND BASIC HYPERGEOMETRIC SERIES
We consider the generating function for a q-analogue of non-strict multiple zeta values (or multiple zeta-star values) and prove an explicit formula for it in terms of a basic hypergeometric series 3φ2. By specializing the variables in the generating function, we reproduce the sum formula obtained by Ohno and Okuda and get some relations in the case of full height.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Asian Journal of Mathematics & Statistics
سال: 2012
ISSN: 1994-5418
DOI: 10.3923/ajms.2012.99.103