Quadratic and cubic invariants in classical mechanics

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 0 Invariants in Supersymmetric Classical Mechanics

The bosonic second invariant of SuperLiouville models in supersymmetric classical mechanics is described.

متن کامل

Noncommutative Classical and Quantum Mechanics for Quadratic Lagrangians (Hamiltonians)

We consider classical and quantum mechanics for an extended Heisenberg algebra with additional canonical commutation relations for position and momentum coordinates. In our approach this additional noncommutativity is removed from the algebra by linear transformation of coordinates and transmitted to the Hamiltonian (Lagrangian). Since linear transformations do not change the quadratic form of ...

متن کامل

Invariants of Cubic Similarity

The question about polynomial maps F : C → C, first raised by Keller [1] in 1939 for polynomials over the integers but now also raised for complex polynomials and, as such, known as The Jacobian Conjecture (JC), asks whether a polynomial map F with nonzero constant Jacobian determinant detF (x) need be a polyomorphism: Injective and also surjective with polynomial inverse. The known reductions ...

متن کامل

Quantum mechanics as the quadratic Taylor approximation of classical mechanics: the finite dimensional case

We show that, in spite of a rather common opinion, quantum mechanics can be represented as an approximation of classical statistical mechanics. The approximation under consideration is based on the ordinary Taylor expansion of physical variables. The quantum contribution is given by the term of the second order. To escape technical difficulties related to the infinite dimension of phase space f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1980

ISSN: 0022-247X

DOI: 10.1016/0022-247x(80)90132-8