Quantum bridges in phase space: interference and nonclassicality in strong-field enhanced ionisation
نویسندگان
چکیده
منابع مشابه
marginal behavior of the quantum potential in extended phase space
here, the concept of quantum potential that has been illustrated in extended phase space (eps) in previous works is explored for its marginal behavior. unlike in configuration space, different representations of the quantum mechanics can be found in eps when exploiting appropriate canonical transformations. these canonical transformations revealed that there exist several representations in whi...
متن کاملQuantum process nonclassicality.
We propose a definition of nonclassicality for a single-mode quantum-optical process based on its action on coherent states. If a quantum process transforms a coherent state to a nonclassical state, it is verified to be nonclassical. To identify nonclassical processes, we introduce a representation for quantum processes, called the process-nonclassicality quasiprobability distribution, whose ne...
متن کاملStrong field double ionization: the phase space perspective.
We identify the phase-space structures that regulate atomic double ionization in strong ultrashort laser pulses. The emerging dynamical picture complements the recollision scenario by clarifying the distinct roles played by the recolliding and core electrons, and leads to verifiable predictions on the characteristic features of the "knee", a hallmark of the nonsequential process.
متن کاملsimulation and experimental studies for prediction mineral scale formation in oil field during mixing of injection and formation water
abstract: mineral scaling in oil and gas production equipment is one of the most important problem that occurs while water injection and it has been recognized to be a major operational problem. the incompatibility between injected and formation waters may result in inorganic scale precipitation in the equipment and reservoir and then reduction of oil production rate and water injection rate. ...
Quantum shuttle in phase space.
We present a quantum theory of the shuttle instability in electronic transport through a nanostructure with a mechanical degree of freedom. A phase space formulation in terms of the Wigner function allows us to identify a crossover from the tunneling to the shuttling regime, thus extending the previously found classical results to the quantum domain. Further, a new dynamical regime is discovere...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: New Journal of Physics
سال: 2019
ISSN: 1367-2630
DOI: 10.1088/1367-2630/ab55fa