Resource-efficient quantum key distribution with integrated silicon photonics
نویسندگان
چکیده
منابع مشابه
Efficient Quantum Key Distribution
We devise a simple modification that essentially doubles the efficiency of a well-known quantum key distribution scheme proposed by Bennett and Brassard (BB84). Our scheme assigns significantly different probabilities for the different polarization bases during both transmission and reception to reduce the fraction of discarded data. The actual probabilities used in the scheme are announced in ...
متن کاملHigh-extinction ratio integrated photonic filters for silicon quantum photonics.
We present the generation of quantum-correlated photon pairs and subsequent pump rejection across two silicon-on-insulator photonic integrated circuits. Incoherently cascaded lattice filters are used to provide over 100 dB pass-band to stop-band contrast with no additional external filtering. Photon pairs generated in a microring resonator are successfully separated from the input pump, confirm...
متن کاملGermanium-on-Silicon for Integrated Silicon Photonics
To meet the unprecedented demands for data transmission speed and bandwidth silicon integrated photonics that can generate, modulate, process and detect light signals is being developed. Integrated silicon photonics that can be built using existing CMOS fabrication facilities offers the tantalizing prospect of a scalable and cost-efficient solution to replace electrical interconnects. Silicon, ...
متن کاملLimited Resource Semi-Quantum Key Distribution
A semi-quantum key distribution (SQKD) protocol allows a quantum user and a limited “classical” user to establish a shared secret key secure against an allpowerful adversary. In this work, we present a new SQKD protocol where the quantum user is also limited in her measurement capabilities. We describe the protocol, prove its security, and show its noise tolerance is as high as “fully quantum” ...
متن کاملHybrid Integrated Platforms for Silicon Photonics
A review of recent progress in hybrid integrated platforms for silicon photonics is presented. Integration of III-V semiconductors onto silicon-on-insulator substrates based on two different bonding techniques is compared, one comprising only inorganic materials, the other technique using an organic bonding agent. Issues such as bonding process and mechanism, bonding strength, uniformity, wafer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Photonics Research
سال: 2023
ISSN: ['2327-9125']
DOI: https://doi.org/10.1364/prj.482942