RIDGELET TRANSFORM ON SQUARE INTEGRABLE BOEHMIANS
نویسندگان
چکیده
منابع مشابه
Extension of Ridgelet Transform to Tempered Boehmians
We extend the ridgelet transform to the space of tempered Boehmians consistent with the ridgelet transform on the space of tempered distributions. We also prove that the extended ridgelet transform is continuous, linear, bijection and the extended adjoint ridgelet transform is also linear and continuous. AMS Mathematics Subject Classification (2010): 44A15, 44A35, 42C40
متن کاملWavelet Transform of Fractional Integrals for Integrable Boehmians
The present paper deals with the wavelet transform of fractional integral operator (the RiemannLiouville operators) on Boehmian spaces. By virtue of the existing relation between the wavelet transform and the Fourier transform, we obtained integrable Boehmians defined on the Boehmian space for the wavelet transform of fractional integrals.
متن کاملRidgelet transform on the sphere
We first revisit the spherical Radon transform, also called the Funk-Radon transform, viewing it as an axisymmetric convolution on the sphere. Viewing the spherical Radon transform in this manner leads to a straightforward derivation of its spherical harmonic representation, from which we show the spherical Radon transform can be inverted exactly for signals exhibiting antipodal symmetry. We th...
متن کاملDiscrete analytical Ridgelet transform
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...
متن کاملIntegrable Boehmians, Fourier Transforms, and Poisson’s Summation Formula
Boehmians are classes of generalized functions whose construction is algebraic. The first construction appeared in a paper that was published in 1981 [6]. In [8], P. Mikusiński constructs a space of Boehmians, βL1(R), in which each element has a Fourier transform. Mikusiński shows that the Fourier transform of a Boehmian satisfies some basic properties, and he also proves an inversion theorem. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Korean Mathematical Society
سال: 2009
ISSN: 1015-8634
DOI: 10.4134/bkms.2009.46.5.835