RIDGELET TRANSFORM ON SQUARE INTEGRABLE BOEHMIANS

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extension of Ridgelet Transform to Tempered Boehmians

We extend the ridgelet transform to the space of tempered Boehmians consistent with the ridgelet transform on the space of tempered distributions. We also prove that the extended ridgelet transform is continuous, linear, bijection and the extended adjoint ridgelet transform is also linear and continuous. AMS Mathematics Subject Classification (2010): 44A15, 44A35, 42C40

متن کامل

Wavelet Transform of Fractional Integrals for Integrable Boehmians

The present paper deals with the wavelet transform of fractional integral operator (the RiemannLiouville operators) on Boehmian spaces. By virtue of the existing relation between the wavelet transform and the Fourier transform, we obtained integrable Boehmians defined on the Boehmian space for the wavelet transform of fractional integrals.

متن کامل

Ridgelet transform on the sphere

We first revisit the spherical Radon transform, also called the Funk-Radon transform, viewing it as an axisymmetric convolution on the sphere. Viewing the spherical Radon transform in this manner leads to a straightforward derivation of its spherical harmonic representation, from which we show the spherical Radon transform can be inverted exactly for signals exhibiting antipodal symmetry. We th...

متن کامل

Discrete analytical Ridgelet transform

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...

متن کامل

Integrable Boehmians, Fourier Transforms, and Poisson’s Summation Formula

Boehmians are classes of generalized functions whose construction is algebraic. The first construction appeared in a paper that was published in 1981 [6]. In [8], P. Mikusiński constructs a space of Boehmians, βL1(R), in which each element has a Fourier transform. Mikusiński shows that the Fourier transform of a Boehmian satisfies some basic properties, and he also proves an inversion theorem. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Korean Mathematical Society

سال: 2009

ISSN: 1015-8634

DOI: 10.4134/bkms.2009.46.5.835