Mining User Consumption Intention from Social Media Using Domain Adaptive Convolutional Neural Network

نویسندگان

  • Xiao Ding
  • Ting Liu
  • Junwen Duan
  • Jian-Yun Nie
چکیده

Social media platforms are often used by people to express their needs and desires. Such data offer great opportunities to identify users’ consumption intention from user-generated contents, so that better tailored products or services can be recommended. However, there have been few efforts on mining commercial intents from social media contents. In this paper, we investigate the use of social media data to identify consumption intentions for individuals. We develop a Consumption Intention Mining Model (CIMM) based on convolutional neural network (CNN), for identifying whether the user has a consumption intention. The task is domain-dependent, and learning CNN requires a large number of annotated instances, which can be available only in some domains. Hence, we investigate the possibility of transferring the CNN mid-level sentence representation learned from one domain to another by adding an adaptation layer. To demonstrate the effectiveness of CIMM, we conduct experiments on two domains. Our results show that CIMM offers a powerful paradigm for effectively identifying users’ consumption intention based on their social media data. Moreover, our results also confirm that the CNN learned in one domain can be effectively transferred to another domain. This suggests that a great potential for our model to significantly increase effectiveness of product recommendations and targeted advertising.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Similarity measurement for describe user images in social media

Online social networks like Instagram are places for communication. Also, these media produce rich metadata which are useful for further analysis in many fields including health and cognitive science. Many researchers are using these metadata like hashtags, images, etc. to detect patterns of user activities. However, there are several serious ambiguities like how much reliable are these informa...

متن کامل

A Deep Network Model for Paraphrase Detection in Short Text Messages

This paper is concerned with paraphrase detection. The ability to detect similar sentences written in natural language is crucial for several applications, such as text mining, text summarization, plagiarism detection, authorship authentication and question answering. Given two sentences, the objective is to detect whether they are semantically identical. An important insight from this work is ...

متن کامل

A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images

Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...

متن کامل

Ensemble of Convolutional Neural Networks for Medicine Intake Recognition in Twitter

We present the results from our participation in the 2nd Social Media Mining for Health Applications Shared Task – Task 2. The goal of this task is to develop systems capable of recognizing mentions of medication intake in Twitter. Our best performing classification system is an ensemble of neural networks with features generated by wordand character-level convolutional neural network channels ...

متن کامل

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015