In-line three-dimensional holography of nanocrystalline objects at atomic resolution
نویسندگان
چکیده
Resolution and sensitivity of the latest generation aberration-corrected transmission electron microscopes allow the vast majority of single atoms to be imaged with sub-Ångstrom resolution and their locations determined in an image plane with a precision that exceeds the 1.9-pm wavelength of 300 kV electrons. Such unprecedented performance allows expansion of electron microscopic investigations with atomic resolution into the third dimension. Here we report a general tomographic method to recover the three-dimensional shape of a crystalline particle from high-resolution images of a single projection without the need for sample rotation. The method is compatible with low dose rate electron microscopy, which improves on signal quality, while minimizing electron beam-induced structure modifications even for small particles or surfaces. We apply it to germanium, gold and magnesium oxide particles, and achieve a depth resolution of 1-2 Å, which is smaller than inter-atomic distances.
منابع مشابه
Prospects for atomic resolution in-line holography for a 3D determination of atomic structures from single projections
It is now established that the 3D structure of homogeneous nanocrystals can be recovered from in-line hologram of single projections. The method builds on a quantitative contrast interpretation of electron exit wave functions. Since simulated exit wave functions of single and bilayers of graphene reveal the atomic structure of carbon-based materials with sufficient resolution, we explore theore...
متن کاملImproved depth resolution by single-exposure in-line compressive holography.
A single-exposure in-line (SEOL) holography is a digital holographic setup that has been used in the study of cell identification. In this paper we demonstrate improved three-dimensional performance of the SEOL holography setup by applying the principles of the recently introduced compressive-sensing theory. This, along with proper modeling of the sensing process, enables improved depth-resolut...
متن کاملComplex gamma-ray hologram: solution to twin images problem in atomic resolution imaging.
A new technique for high fidelity three-dimensional imaging of atomic structure with gamma-ray holography is demonstrated. A complex hologram was constructed from holograms recorded for different values of the nuclear scattering amplitude on both sides of the (57)Fe Mössbauer resonance. The holographic reconstruction was applied to this complex hologram resulting in a twin-image-free image of t...
متن کاملAtomic resolution holography using advanced reconstruction techniques for two-dimensional detectors
Atomic resolution holography is based on two concepts. Either the emitter of the radiation used is embedded in the sample (internal source concept) or, on account of the optical reciprocity law, the detector forms part of the sample (internal detector concept). In many cases, holographic objects (atoms and nuclei) simultaneously adopt the roles of both source and detector. Thus, the recorded im...
متن کاملDigital in-line holography for biological applications.
Digital in-line holography with numerical reconstruction has been developed into a new tool, specifically for biological applications, that routinely achieves both lateral and depth resolution, at least at the micron level, in three-dimensional imaging. The experimental and numerical procedures have been incorporated into a program package with a very fast reconstruction algorithm that is now c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016