Effects of antidepressants on the conformation of phospholipid headgroups studied by solid-state NMR.

نویسندگان

  • Jose S Santos
  • Dong-Kuk Lee
  • Ayyalusamy Ramamoorthy
چکیده

The effect of tricyclic antidepressants (TCA) on phospholipid bilayer structure and dynamics was studied to provide insight into the mechanism of TCA-induced intracellular accumulation of lipids (known as lipidosis). Specifically we asked if the lipid-TCA interaction was TCA or lipid specific and if such physical interactions could contribute to lipidosis. These interactions were probed in multilamellar vesicles and mechanically oriented bilayers of mixed phosphatidylcholine-phosphatidylglycerol (PC-PG) phospholipids using (31)P and (14)N solid-state NMR techniques. Changes in bilayer architecture in the presence of TCAs were observed to be dependent on the TCA's effective charge and steric constraints. The results further show that desipramine and imipramine evoke distinguishable changes on the membrane surface, particularly on the headgroup order, conformation and dynamics of phospholipids. Desipramine increases the disorder of the choline site at the phosphatidylcholine headgroup while leaving the conformation and dynamics of the phosphate region largely unchanged. Incorporation of imipramine changes both lipid headgroup conformation and dynamics. Our results suggest that a correlation between TCA-induced changes in bilayer architecture and the ability of these compounds to induce lipidosis is, however, not straightforward as imipramine was shown to induce more dramatic changes in bilayer conformation and dynamics than desipramine. The use of (14)N as a probe was instrumental in arriving at the presented conclusions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction of Zn2+ with phospholipid membranes.

To characterize the specificity of zinc binding to phospholipid membranes in terms of headgroup structure, hydration and phase behavior we studied the zwitterionic lipid 1-palmitoyl-2-oleoyl-phosphatidylcholine as a function of hydration at 30 degreesC in the presence and absence of ZnCl2. Zinc forms a 2:1-1:1 complex with the lipid, and in particular with the negatively charged phosphate group...

متن کامل

Interactions of sialic acid with phosphatidylcholine liposomes studied by 2D NMR spectroscopy.

Biological membranes are complex systems which have attracted scientific interest for a long time and for various reasons. The sialic acid-liposome interactions at the molecular level depend on their hydro-lipophilic characteristics. The aim of the present study was to investigate the changes of conformation of the phospholipid (1,2-Diacyl-sn-glycero-3-phosphocholine) and sialic acid (2,8-(N-ac...

متن کامل

Amphipathic antimicrobial piscidin in magnetically aligned lipid bilayers.

The amphipathic antimicrobial peptide piscidin 1 was studied in magnetically aligned phospholipid bilayers by oriented-sample solid-state NMR spectroscopy. (31)P NMR and double-resonance (1)H/(15)N NMR experiments performed between 25 °C and 61 °C enabled the lipid headgroups as well as the peptide amide sites to be monitored over a range of temperatures. The α-helical peptide dramatically affe...

متن کامل

Dynamics and Disorder in Surfactant-Templated Silicate Layers Studied by Solid-State NMR Dephasing Times and Correlated Line Shapes

Surfactant-templated layered silicates are shown to possess complex compositional, structural, and dynamic features that manifest rich and interrelated order and disorder at molecular length scales. Temperature-dependent 1D and 2D solid-state 29Si NMR measurements reveal a chemical-exchange process involving the surfactant headgroups that is concomitant with reversible broadening of 29Si NMR li...

متن کامل

Solid-State NMR Spectroscopic Approaches to Investigate Dynamics, Secondary Structure and Topology of Membrane Proteins

Solid-state NMR spectroscopy is routinely used to determine the structural and dynamic properties of both membrane proteins and peptides in phospholipid bilayers [1-26]. From the perspective of the perpetuated lipids, H solid-state NMR spectroscopy can be used to probe the effect of embedded proteins on the order and dynamics of the acyl chains of phospholipid bilayers [8-13]. Moreover, P solid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance in chemistry : MRC

دوره 42 2  شماره 

صفحات  -

تاریخ انتشار 2004