partDSA: deletion/substitution/addition algorithm for partitioning the covariate space in prediction
نویسندگان
چکیده
MOTIVATION Until now, much of the focus in cancer has been on biomarker discovery and generating lists of univariately significant genes, as well as epidemiological and clinical measures. These approaches, although significant on their own, are not effective for elucidating the synergistic qualities of the numerous components in complex diseases. These components do not act one at a time, but rather in concert with numerous others. A compelling need exists to develop analytically sound and computationally advanced methods that elucidate a more biologically meaningful understanding of the mechanisms of cancer initiation and progression by taking these interactions into account. RESULTS We propose a novel algorithm, partDSA, for prediction when several variables jointly affect the outcome. In such settings, piecewise constant estimation provides an intuitive approach by elucidating interactions and correlation patterns in addition to main effects. As well as generating 'and' statements similar to previously described methods, partDSA explores and chooses the best among all possible 'or' statements. The immediate benefit of partDSA is the ability to build a parsimonious model with 'and' and 'or' conjunctions that account for the observed biological phenomena. Importantly, partDSA is capable of handling categorical and continuous explanatory variables and outcomes. We evaluate the effectiveness of partDSA in comparison to several adaptive algorithms in simulations; additionally, we perform several data analyses with publicly available data and introduce the implementation of partDSA as an R package. AVAILABILITY http://cran.r-project.org/web/packages/partDSA/index.html CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
منابع مشابه
Deletion/Substitution/Addition Algorithm for Partitioning the Covariate Space in Prediction
We propose a new method for predicting censored (and non-censored) clinical outcomes from a highly-complex covariate space. Previously we suggested a unified strategy for predictor construction, selection, and performance assessment. Here we introduce a new algorithm which generates a piecewise constant estimation sieve of candidate predictors based on an intensive and comprehensive search over...
متن کاملA partitioning deletion/substitution/addition algorithm for creating survival risk groups.
Accurately assessing a patient's risk of a given event is essential in making informed treatment decisions. One approach is to stratify patients into two or more distinct risk groups with respect to a specific outcome using both clinical and demographic variables. Outcomes may be categorical or continuous in nature; important examples in cancer studies might include level of toxicity or time to...
متن کاملDevelopment of Lifetime Prediction Model of Lithium-Ion Battery Based on Minimizing Prediction Errors of Cycling and Operational Time Degradation Using Genetic Algorithm
Accurate lifetime prediction of lithium-ion batteries is a great challenge for the researchers and engineers involved in battery applications in electric vehicles and satellites. In this study, a semi-empirical model is introduced to predict the capacity loss of lithium-ion batteries as a function of charge and discharge cycles, operational time, and temperature. The model parameters are obtai...
متن کاملTargeted maximum likelihood estimation for prediction calibration.
Estimators of the conditional expectation, i.e., prediction, function involve a global bias-variance trade off. In some cases, an estimator that yields unbiased estimates of the conditional expectation for a particular partitioning of the data may be desirable. Such estimators are calibrated with respect to the partitioning. We identify the conditional expectation given a particular partitionin...
متن کاملImproving Accuracy of DGPS Correction Prediction in Position Domain using Radial Basis Function Neural Network Trained by PSO Algorithm
Differential Global Positioning System (DGPS) provides differential corrections for a GPS receiver in order to improve the navigation solution accuracy. DGPS position signals are accurate, but very slow updates. Improving DGPS corrections prediction accuracy has received considerable attention in past decades. In this research work, the Neural Network (NN) based on the Gaussian Radial Basis Fun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 26 10 شماره
صفحات -
تاریخ انتشار 2010