A framework for studying synaptic plasticity with neural spike train data

نویسندگان

  • Scott W. Linderman
  • Christopher H. Stock
  • Ryan P. Adams
چکیده

Learning and memory in the brain are implemented by complex, time-varying changes in neural circuitry. The computational rules according to which synaptic weights change over time are the subject of much research, and are not precisely understood. Until recently, limitations in experimental methods have made it challenging to test hypotheses about synaptic plasticity on a large scale. However, as such data become available and these barriers are lifted, it becomes necessary to develop analysis techniques to validate plasticity models. Here, we present a highly extensible framework for modeling arbitrary synaptic plasticity rules on spike train data in populations of interconnected neurons. We treat synaptic weights as a (potentially nonlinear) dynamical system embedded in a fullyBayesian generalized linear model (GLM). In addition, we provide an algorithm for inferring synaptic weight trajectories alongside the parameters of the GLM and of the learning rules. Using this method, we perform model comparison of two proposed variants of the well-known spike-timing-dependent plasticity (STDP) rule, where nonlinear effects play a substantial role. On synthetic data generated from the biophysical simulator NEURON, we show that we can recover the weight trajectories, the pattern of connectivity, and the underlying learning rules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Reinforcement Learning with Modulated Spike Timing-Dependent Synaptic Plasticity Running head: Reinforcement Learning with STDP

Spike timing-dependent synaptic plasticity (STDP) has emerged as the preferred framework linking patterns of pre-and postsynaptic activity to changes in synaptic strength. Although synaptic plasticity is widely believed to be a major component of learning, it is unclear how STDP itself could serve as a mechanism for general purpose learning. On the other hand, algorithms for reinforcement learn...

متن کامل

Reinforcement learning with modulated spike timing dependent synaptic plasticity.

Spike timing-dependent synaptic plasticity (STDP) has emerged as the preferred framework linking patterns of pre- and postsynaptic activity to changes in synaptic strength. Although synaptic plasticity is widely believed to be a major component of learning, it is unclear how STDP itself could serve as a mechanism for general purpose learning. On the other hand, algorithms for reinforcement lear...

متن کامل

Reward Modulated Spike Timing Dependent Plasticity Based Learning Mechanism in Spiking Neural Networks

Spiking Neural Networks (SNNs) are one of the recent advances in machine learning that aim to further emulate the computations performed in the human brain. The efficiency of such networks stems from the fact that information is encoded as spikes, which is a paradigm shift from the computing model of the traditional neural networks. Spike Timing Dependent Plasticity (STDP), wherein the synaptic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014