Impacts of Antioxidants on Hydroxyl Radical Production from Individual and Mixed Transition Metals in a Surrogate Lung Fluid.

نویسندگان

  • Jessica G Charrier
  • Cort Anastasio
چکیده

Inhalation of ambient particulate matter causes morbidity and mortality in humans. One hypothesized mechanism of toxicity is the particle-induced formation of reactive oxygen species (ROS) - including the highly damaging hydroxyl radical ((·)OH) - followed by inflammation and a variety of diseases. While past studies have found correlations between ROS formation and a variety of metals, there are no quantitative measurements of (·)OH formation from transition metals at concentrations relevant to 24-hour ambient particulate exposure. This research reports specific and quantitative measurements of (·)OH formation from 10 individual transition metals (and several mixtures) in a cell-free surrogate lung fluid (SLF) with four antioxidants: ascorbate, citrate, glutathione, and uric acid. We find that Fe and Cu can produce (·)OH under all antioxidant conditions as long as ascorbate is present and that mixtures of the two metals synergistically increase (·)OH production. Manganese and vanadium can also produce (·)OH under some conditions, but given that their ambient levels are typically very low, these metals are not likely to chemically produce significant levels of (·)OH in the lung fluid. Cobalt, chromium, nickel, zinc, lead, and cadmium do not produce (·)OH under any of our experimental conditions. The antioxidant composition of our SLF significantly affects (·)OH production from Fe and Cu: ascorbate is required for (·)OH formation, citrate increases (·)OH production from Fe, and both citrate and glutathione suppress (·)OH production from Cu. MINTEQ ligand speciation modeling indicates that citrate and glutathione affect (·)OH production by changing metal speciation, altering the reactivity of the metals. In the most realistic SLF (i.e., with all four antioxidants), Fe generates approximately six times more (·)OH than does the equivalent amount of Cu. Since levels of soluble Fe in PM are typically higher than those of Cu, our results suggest that Fe dominates the chemical generation of (·)OH from deposited particles in the lungs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generation of Hydroxyl Radicals from Dissolved Transition Metals in Surrogate Lung Fluid Solutions.

Epidemiological research has linked exposure to atmospheric particulate matter (PM) to several adverse health effects, including cardiovascular and pulmonary morbidity and mortality. Despite these links, the mechanisms by which PM causes adverse health effects are poorly understood. The generation of hydroxyl radical (.OH) and other reactive oxygen species (ROS) through transition metal-mediate...

متن کامل

Quantitative measurements of the generation of hydroxyl radicals by soot particles in a surrogate lung fluid

Epidemiological and toxicological studies have shown a relation between the inhalation of atmospheric particles and adverse cardiopulmonary health effects. The generation of reactive oxygen species (ROS) by particles is one current hypothesis for their toxic effects. Thus a quantitative measurement of ROS is important since that will be an index to assess the oxidative stress that particles may...

متن کامل

Formation of hydroxyl radical from San Joaquin Valley particles extracted in a cell-free surrogate lung fluid.

Previous studies have suggested that the adverse health effects from ambient particulate matter (PM) are linked to the formation of reactive oxygen species (ROS) by PM in cardiopulmonary tissues. While hydroxyl radical ((•)OH) is the most reactive of the ROS species, there are few quantitative studies of (•)OH generation from PM. Here we report on (•)OH formation from PM collected at an urban (...

متن کامل

Hydrogen Abstraction Reaction of Hydroxyl Radical with 1,1-Dibromoethane and 1,2-Dibromoethane Studied by Using Semi-Classical Transition State Theory

The hydrogen abstraction reaction by OH radical from CH2BrCH2Br (R1) and CH₃CHBr2 (R2) is investigated theoretically by semi-classical transition state theory. The stationary points for both reactions are located by using ωB97X-D and KMLYP density functional methods along with cc-pVTZ basis. Single-point energy calculations are performed at the QCISD(T) and CCSD(T) levels of theory with differe...

متن کامل

Development of a Method for measuring Reactive Oxygen Radicals Levels In Vitro and Study the Effects of Vitamin C and E on Radical Production Reaction

Background: Free radicals and reactive oxygen species(ROS) are the most important factors in formation of oxidative stress reaction. Now, radical damage has been suggested to contribute to a wide variety of diseases such as Alzheimer, atherosclerosis and cancer. Transition metal ions in the presence of the various biomolecules produce these active compounds. The aim of this study is introducing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Atmospheric environment

دوره 45 40  شماره 

صفحات  -

تاریخ انتشار 2011