Ascorbate-enhanced chondrogenesis of ATDC5 cells.

نویسندگان

  • F M Altaf
  • T M Hering
  • N H Kazmi
  • J U Yoo
  • B Johnstone
چکیده

The ATDC5 cell line exhibits the multistep chondrogenic differentiation observed during endochondral bone formation. However, it takes up to two months to complete the process of cell expansion, insulin addition to promote differentiation and further changes in culture conditions effectively to induce hypertrophy. We sought to produce consistent chondrogenesis with significant hypertrophic differentiation with simpler conditions in a more practical time period. By adding ascorbate, the prechondrogenic proliferation phase was shortened from 21 to 7 days, with production of cartilaginous nodules during the chondrogenic phase, after insulin addition, that were greater in number and larger in size. Immunohistochemistry indicated much greater matrix elaboration and the mRNA expression of sox9, aggrecan and collagen type II were all significantly increased earlier and to a much higher degree when compared with controls. Moreover, there was a robust induction of hypertrophy: Col10a1, Runx2 and Mmp13 were all induced within 7-10 days. In conclusion, addition of ascorbate to ATDC5 cultures shortened the prechondrogenic proliferation phase, produced earlier chondrogenic differentiation, heightened gene expression and robust hypertrophic differentiation, abrogating the need for extended culture times and the changes in culture conditions. This simple modification considerably enhances the practicality of this cell line for studies of chondrogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presence and function of microRNA-92a in chondrogenic ATDC5 and adipose-derived mesenchymal stem cells

The aim of the present study was to investigate the presence and biological function of microRNA-92a (miR-92a) in chondrogenesis and cartilage degeneration. Human adipose‑derived mesenchymal stem cells (hADSCs) in micromass and chondrocyte‑like ATDC5 cells were induced to chondrogenesis, and primary human/mouse chondrocytes (PHCs/PMCs) and chondrogenic ATDC5 cells were stimulated with interleuk...

متن کامل

Evaluation of Insulin Medium or Chondrogenic Medium on Proliferation and Chondrogenesis of ATDC5 Cells

BACKGROUND The ATDC5 cell line is regarded as an excellent cell model for chondrogenesis. In most studies with ATDC5 cells, insulin medium (IM) was used to induce chondrogenesis while chondrogenic medium (CM), which was usually applied in chondrogenesis of mesenchymal stem cells (MSCs), was rarely used for ATDC5 cells. This study was mainly designed to investigate the effect of IM, CM, and grow...

متن کامل

The Role of MicroRNA-381 in Chondrogenesis and Interleukin-1-β Induced Chondrocyte Responses.

AIM The molecular pathways regulating cartilage degradation are unclear. miR-381 was identified as a putative regulator of chondrogenesis related genes. Here, we examined its role in chondrogenesis and osteoarthritic cartilage degeneration. METHODS miR-381 expression was assessed in vitro in response to IL-1β stimulation in primary human (PHC) and mouse (PMC) chondrocytes, and ATDC5 derived c...

متن کامل

Proper expression of helix-loop-helix protein Id2 is important to chondrogenic differentiation of ATDC5 cells.

The process of chondrogenesis can be mimicked in vitro by insulin treatment of mouse ATDC5 chondroprogenitor cells. To identify novel factors that are involved in the control of chondrogenesis, we carried out a large-scale screening through retroviral insertion mutagenesis and isolated a fast-growing ATDC5 clone incapable of chondrogenic differentiation. Inverse-PCR analysis of this clone revea...

متن کامل

Isopsoralen Induces Differentiation of Prechondrogenic ATDC5 Cells via Activation of MAP Kinases and BMP-2 Signaling Pathways

Endochondral bone formation is the process by which mesenchymal cells condense to become chondrocytes, which ultimately form new bone. The process of chondrogenic differentiation and hypertrophy is critical for bone formation and as such is regulated by many factors. In this study, we aimed to indentify novel factors that regulate chondrogenesis. We investigated the possible role of isopsoralen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European cells & materials

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2006