Editorial: Control of Plant Pathogens by Biogenic Elicitors and Possible Mechanisms of Action

نویسندگان

  • Vitaly G. Dzhavakhiya
  • Larisa A. Shcherbakova
چکیده

Elicitors of biological origin, especially those that are able to control plant pathogens by induction of plant systemic resistance are being intensively investigated because of their great potential for crop protection and environmental compatibility. Since the range of induced defense responses can depend on the elicitor used, the plant treated and the target pathogen, a detailed study of the modes of action of biogenic elicitors is required prior to their use. In this context, an important aim of the Research Topic on Control of plant pathogens by biogenic elicitors and possible mechanisms of action was a better understanding of the mechanisms underlying the protective effect of microorganisms with a potential or already established role in biocontrol. Interestingly, works included in the topic report that a biocontrol agent is simultaneously able to activate both SAR and ISR defense pathways in the same plant (e.g., Salas-Marina et al.; Song et al.). Thus, tomato root colonization with the arbuscular mycorrhizal fungus Funneliformis mosseae induced a range of plant defense reactions, and primed defense responses, including the activation of some enzymes and the up-regulation of PR genes associated with SAR upon challenge with Alternaria solani. At the same time, it was also shown that JA-dependent signaling was necessary for mycorrhiza-primed systemic resistance to this pathogen (Song et al.). Plant disease resistance is triggered by various elicitors, which are widely presented in pathogenic and non-pathogenic fungi, bacteria and oomycetes. Biogenic elicitors (glycoproteins, lipids, or oligosaccharides) as well as microbial proteins and peptides triggering defense responses play an important role in the development of local and systemic resistance. In the current research topic, several publications confirm the importance of such proteins for plant-mediated interactions of biocontrol fungi with soil or foliar pathogens of various life styles. They report both common features and individual specificity concerning the mechanisms of action of various proteinaceous elicitors. For instance, colonization of plant roots with saprophytic Fusarium oxysporum or Trichoderma strains protects tomato against vascular wilt and other diseases via distinct mechanisms including induction of local and systemic resistance. Proteins, such as CS20EP produced by F. oxysporum strain CS-20 (Shcherbakova et al.) as well as Sm1 and Epl1 from Trichoderma spp. (Salas-Marina et al.) strongly contribute to the activation of defense-responsive genes in the pretreated plants. Experiments on systemic tomato protection with wild, epl1-and sm1-deletion or overexpression strains against necrotrophic (A. solani, Botrytis cinerea) and hemibiotrophic (Pseudomonas syringae pv. tomato) pathogens …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elicitors: A Tool for Improving Fruit Phenolic Content

Fruits are one of the most important sources of polyphenols for humans, whether they are consumed fresh or as processed products. To improve the phenolic content of fruits, a novel field of interest is based on results obtained using elicitors, agrochemicals which were primarily designed to improve resistance to plant pathogens. Although elicitors do not kill pathogens, they trigger plant defen...

متن کامل

A complex protein derivative acts as biogenic elicitor of grapevine resistance against powdery mildew under field conditions

Powdery mildew caused by Erysiphe necator is one of the most important grapevine diseases in several viticulture areas, and high fungicide input is required to control it. However, numerous synthetic chemical pesticides are under scrutiny due to concerns about their impact on human health and the environment. Biopesticides, such as biogenic elicitors, are a promising alternative to chemical fun...

متن کامل

Nano-Elicitation of Secondary Pharmaceutical Metabolites in Plant Cells: A Review

In recent years, metabolism researches using nanomaterials have been focusing on human and animal cells, and therefore very limited data are available about influence of nanomaterials on biosynthesis of secondary metabolites in plant cells. Plants produce different types of secondary metabolites including terpenoids, phenolics, tannins, and alkaloids, which are known to act as vital mediators f...

متن کامل

Pathogen derived elicitors: searching for receptors in plants.

SUMMARY Recognition of potential pathogens is central to plants' ability to defend themselves against harmful microbes. Plants are able to recognize pathogen-derived molecules; elicitors that trigger a number of induced defences in plants. Microbial elicitors constitute a bewildering array of compounds including different oligosaccharides, lipids, peptides and proteins. Identifying the receptor...

متن کامل

Investigation on Microstructure, Lattice and Structural Chemistry of Biogenic Silver Nanoparticles

   The use of plant extract in the biosynthesis of nanoparticles (NPs) can be an eco-friendly approach and have been suggested as a possible alternative to classic methods namely physical and chemical procedures. This study was designed to examine the structural chemistry of silver nanoparticles (AgNPs) using both conventional heating and microwave irradiation methods.To o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016