Hyaluronidase 2 Deficiency Causes Increased Mesenchymal Cells, Congenital Heart Defects, and Heart Failure
نویسندگان
چکیده
BACKGROUND Hyaluronan (HA) is required for endothelial-to-mesenchymal transition and normal heart development in the mouse. Heart abnormalities in hyaluronidase 2 (HYAL2)-deficient (Hyal2-/- ) mice and humans suggested removal of HA is also important for normal heart development. We have performed longitudinal studies of heart structure and function in Hyal2-/- mice to determine when, and how, HYAL2 deficiency leads to these abnormalities. METHODS AND RESULTS Echocardiography revealed atrial enlargement, atrial tissue masses, and valvular thickening at 4 weeks of age, as well as diastolic dysfunction that progressed with age, in Hyal2-/- mice. These abnormalities were associated with increased HA, vimentin-positive cells, and fibrosis in Hyal2-/- compared with control mice. Based on the severity of heart dysfunction, acute and chronic groups of Hyal2-/- mice that died at an average of 12 and 25 weeks respectively, were defined. Increased HA levels and mesenchymal cells, but not vascular endothelial growth factor in Hyal2-/- embryonic hearts, suggest that HYAL2 is important to inhibit endothelial-to-mesenchymal transition. Consistent with this, in wild-type embryos, HYAL2 and HA were readily detected, and HA levels decreased with age. CONCLUSIONS These data demonstrate that disruption of normal HA catabolism in Hyal2-/- mice causes increased HA, which may promote endothelial-to-mesenchymal transition and proliferation of mesenchymal cells. Excess endothelial-to-mesenchymal transition, resulting in increased mesenchymal cells, is the likely cause of morphological heart abnormalities in both humans and mice. In mice, these abnormalities result in progressive and severe diastolic dysfunction, culminating in heart failure.
منابع مشابه
Combined loss of Hey1 and HeyL causes congenital heart defects because of impaired epithelial to mesenchymal transition.
Congenital heart defects affect almost 1% of human newborns. Recently, mutations in Notch ligands and receptors have been found to cause a variety of heart defects in rodents and humans. However, the molecular effects downstream of Notch are still poorly understood. Here we report that combined inactivation of Hey1 and HeyL, two primary target genes of Notch, causes severe heart malformations, ...
متن کاملMesenchymal stem cells from umbilical cord tissue as potential therapeutics for cardiomyodegenerative diseases – a review
Heart failure is one of the leading causes of death worldwide. End stage disease often requires heart transplantation, which is hampered by donor organ shortage. Tissue engineering represents a promising alternative approach for cardiac repair. For the generation of artificial heart muscle tissue several cell types, scaffold materials and bioreactor designs are under investigation. In this revi...
متن کاملEvaluation of intravenous injection of amniotic membrane stem cells to reduce inflammatory factors in heart failure
Background: Heart failure is one of the most common cardiovascular disorders and is considered a chronic, progressive and debilitating disorder. The medical treatment of this disease is accompanied by many problems. Today, stem cells are being used increasingly to reduce the problems of heart failure treatments. Since pro-inflammatory cytokines play an important role in the prognosis and progre...
متن کاملConditioned medium obtained from human amniotic membrane-derived mesenchymal stem cell attenuates heart failure injury in rats
Objective(s): Heart failure (HF) is one of the leading causes of death worldwide. Due to beneficial effects of stem cells, paracrine secretion of them has recently been used by researchers. The purpose of this study was to investigate the effects of intravenous injection (IV) of conditioned medium (CM) of human amniotic membrane-derived mesenchymal stem cell (MSC-CM) o...
متن کاملنوزاد متولد شده با مالفورماسیون مادرزادی شریانی- وریدی مغزی و نارسایی احتقاقی قلبی: گزارش موردی
Background: Cerebral arteriovenous malformations are rare congenital anomalies presenting as different symptoms depending on their size and the age of patient. Congestive heart failure is a rare condition in neonatal period and is most common due to structural heart defects, but rarely may be a result of peripheral shunts such as cerebral arteriovenous malformation. Case presentation: A term...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2017