Electrically driven nanobeam laser

نویسندگان

  • Kwang-Yong Jeong
  • You-Shin No
  • Yongsop Hwang
  • Ki Soo Kim
  • Min-Kyo Seo
  • Hong-Gyu Park
  • Yong-Hee Lee
چکیده

The realization of lasers as small as possible has been one of the long-standing goals of the laser physics and quantum optics communities. Among multitudes of recent small cavities, the one-dimensional nanobeam cavity has been actively investigated as one of the most attractive candidates for effective photon confinement thanks to its simple geometry. However, the current injection into the ultra-small nano-resonator without critically degrading the quality factor remains still unanswered. Here we report an electrically driven, onedimensional, photonic-well, single-mode, room-temperature nanobeam laser whose footprint approaches the smallest possible value. The small physical volume of B4.6 0.61 0.28 mm3 (B8.2(l n 1)3) was realized through the introduction of a Gaussian-like photonic well made of only 11 air holes. In addition, a low threshold current of B5mA was observed from a three-cell nanobeam cavity at room temperature. The simple one-dimensional waveguide nature of the nanobeam enables straightforward integration with other photonic applications such as photonic integrated circuits and quantum information devices. DOI: 10.1038/ncomms3822 OPEN

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanobeam photonic crystal cavity light-emitting diodes

We present results on electrically driven nanobeam photonic crystal cavities formed out of a lateral p-i-n junction in gallium arsenide. Despite their small conducting dimensions, nanobeams have robust electrical properties with high current densities possible at low drive powers. Much like their two-dimensional counterparts, the nanobeam cavities exhibit bright electroluminescence at room temp...

متن کامل

Robust Fractional-order Control of Flexible-Joint Electrically Driven Robots

This paper presents a novel robust fractional PIλ controller design for flexible joint electrically driven robots. Because of using voltage control strategy, the proposed approach is free of problems arising from torque control strategy in the design and implementation. In fact, the motor's current includes the effects of nonlinearities and coupling in the robot manipulator. Therefore, cancella...

متن کامل

Task-space Control of Electrically Driven Robots

Actuators of robot operate in the joint-space while the end-effect or of robot is controlled in the task-space. Therefore, designing a control system for a robotic system in the task-space requires the jacobian matrix information for transforming joint-space to task-space, which suffers from uncertainties. This paper deals with the robust task-space control of electrically driven robot manipula...

متن کامل

Robust Fractional-order Control of Flexible-Joint Electrically Driven Robots

This paper presents a novel robust fractional PIλ controller design for flexible joint electrically driven robots. Because of using voltage control strategy, the proposed approach is free of problems arising from torque control strategy in the design and implementation. In fact, the motor's current includes the effects of nonlinearities and coupling in the robot manipulator. Therefore, cancella...

متن کامل

Robust Control of Electrically Driven Robots in the Task Space

In this paper, a task-space controller for electrically driven robot manipulators is developed using a robust control algorithm. The controller is designed using voltage control strategy. Based on the nominal model of the robotic arm, the desired signals for motor currents are calculated and then the voltage control law is proposed based on the current errors and motor nominal electrical model....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013