Asymmetric cell division: microtubule dynamics and spindle asymmetry.

نویسندگان

  • Julia A Kaltschmidt
  • Andrea H Brand
چکیده

Asymmetric cell division can produce daughter cells with different developmental fates and is often accompanied by a difference in cell size. A number of recent genetic and in vivo imaging studies in Drosophila and Caenorhabditis elegans have begun to elucidate the mechanisms underlying the rearrangements of the cytoskeleton that result in eccentrically positioned cleavage planes. As a result, we are starting to gain an insight into the complex nature of the signals controlling cytoskeletal dynamics in the dividing cell. In this commentary we discuss recent findings on how the mitotic spindle is positioned and on cleavage site induction and place them in the context of cell size asymmetry in different model organisms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PAR Proteins Regulate Microtubule Dynamics at the Cell Cortex in C. elegans

BACKGROUND The PAR proteins are known to be localized asymmetrically in polarized C. elegans, Drosophila, and human cells and to participate in several cellular processes, including asymmetric cell division and spindle orientation. Although astral microtubules are known to play roles in these processes, their behavior during these events remains poorly understood. RESULTS We have developed a ...

متن کامل

Roles of the fission yeast formin for3p in cell polarity, actin cable formation and symmetric cell division

BACKGROUND Both symmetric and asymmetric cell divisions are required for the generation of appropriate cell lineages during development. Wild-type Schizosaccharomyces pombe cells divide in a symmetric fashion to produce two similar rod-shaped daughter cells. Formins are proteins with conserved roles in cell polarity, cytokinesis, and the regulation of actin and microtubule cytoskeletons. RESU...

متن کامل

Microtubule-induced Pins/Galphai cortical polarity in Drosophila neuroblasts.

Cortical polarity regulates cell division, migration, and differentiation. Microtubules induce cortical polarity in yeast, but few examples are known in metazoans. We show that astral microtubules, kinesin Khc-73, and Discs large (Dlg) induce cortical polarization of Pins/Galphai in Drosophila neuroblasts; this cortical domain is functional for generating spindle asymmetry, daughter-cell-size a...

متن کامل

Microtubule-Induced Pins/Gαi Cortical Polarity in Drosophila Neuroblasts

Cortical polarity regulates cell division, migration, and differentiation. Microtubules induce cortical polarity in yeast, but few examples are known in metazoans. We show that astral microtubules, kinesin Khc-73, and Discs large (Dlg) induce cortical polarization of Pins/Gai in Drosophila neuroblasts; this cortical domain is functional for generating spindle asymmetry, daughtercell-size asymme...

متن کامل

Equilibria of Idealized Confined Astral Microtubules and Coupled Spindle Poles

Positioning of the mitotic spindle through the interaction of astral microtubules with the cell boundary often determines whether the cell division will be symmetric or asymmetric. This process plays a crucial role in development. In this paper, a numerical model is presented that deals with the force exerted on the spindle by astral microtubules that are bent by virtue of their confinement wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 115 Pt 11  شماره 

صفحات  -

تاریخ انتشار 2002