Learning to Rank
نویسنده
چکیده
In this tutorial I will introduce ‘learning to rank’, a machine learning technology on constructing a model for ranking objects using training data. I will first explain the problem formulation of learning to rank, and relations between learning to rank and the other learning tasks. I will then describe learning to rank methods developed in recent years, including pointwise, pairwise, and listwise approaches. I will then give an introduction to the theoretical work on learning to rank and the applications of learning to rank. Finally, I will show some future directions of research on learning to rank. The goal of this tutorial is to give the audience a comprehensive survey to the technology and stimulate more research on the technology and application of the technology to natural language processing. Learning to rank has been successfully applied to information retrieval and is potentially useful for natural language processing as well. In fact many NLP tasks can be formalized as ranking problems and NLP technologies may be significantly improved by using learning to rank techniques. These include question answering, summarization, and machine translation. For example, in machine translation, given a sentence in the source language, we are to translate it to a sentence in the target language. Usually there are multiple possible translations and it would be better to sort the possible translations in descending order of their likelihood and output the sorted results. Learning to rank can be employed in the task.
منابع مشابه
Effective Learning to Rank Persian Web Content
Persian language is one of the most widely used languages in the Web environment. Hence, the Persian Web includes invaluable information that is required to be retrieved effectively. Similar to other languages, ranking algorithms for the Persian Web content, deal with different challenges, such as applicability issues in real-world situations as well as the lack of user modeling. CF-Rank, as a ...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملارائه الگوریتمی مبتنی بر یادگیری جمعی به منظور یادگیری رتبهبندی در بازیابی اطلاعات
Learning to rank refers to machine learning techniques for training a model in a ranking task. Learning to rank has been shown to be useful in many applications of information retrieval, natural language processing, and data mining. Learning to rank can be described by two systems: a learning system and a ranking system. The learning system takes training data as input and constructs a ranking ...
متن کاملInvestigating the Relationship between Faculty Members` Demographic Features and Learning and Education Quality in Fars Payame Noor University and Shiraz University of Medical Sciences
Introduction: In many countries in order to harmonize higher education systems and university programs along with global changes, improving the quality of learning and teaching is the priority. This study aimed to investigate the relationship between faculty members` demographic features and learning and education quality from the view point of faculty members of Fars Payame Noor University and...
متن کاملA Short Introduction to Learning to Rank
Learning to rank refers to machine learning techniques for training the model in a ranking task. Learning to rank is useful for many applications in Information Retrieval, Natural Language Processing, and Data Mining. Intensive studies have been conducted on the problem and significant progress has been made [1], [2]. This short paper gives an introduction to learning to rank, and it specifical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009