Current Status of Single Particle Imaging with X-ray Lasers

نویسندگان

  • Zhibin Sun
  • Jiadong Fan
  • Haoyuan Li
  • Huaidong Jiang
چکیده

The advent of ultrafast X-ray free-electron lasers (XFELs) opens the tantalizing possibility of the atomic-resolution imaging of reproducible objects such as viruses, nanoparticles, single molecules, clusters, and perhaps biological cells, achieving a resolution for single particle imaging better than a few tens of nanometers. Improving upon this is a significant challenge which has been the focus of a global single particle imaging (SPI) initiative launched in December 2014 at the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, USA. A roadmap was outlined, and significant multi-disciplinary effort has since been devoted to work on the technical challenges of SPI such as radiation damage, beam characterization, beamline instrumentation and optics, sample preparation and delivery and algorithm development at multiple institutions involved in the SPI initiative. Currently, the SPI initiative has achieved 3D imaging of rice dwarf virus (RDV) and coliphage PR772 viruses at ~10 nm resolution by using soft X-ray FEL pulses at the Atomic Molecular and Optical (AMO) instrument of LCLS. Meanwhile, diffraction patterns with signal above noise up to the corner of the detector with a resolution of ~6 Ångström (Å) were also recorded with hard X-rays at the Coherent X-ray Imaging (CXI) instrument, also at LCLS. Achieving atomic resolution is truly a grand challenge and there is still a long way to go in light of recent developments in electron microscopy. However, the potential for studying dynamics at physiological conditions and capturing ultrafast biological, chemical and physical processes represents a tremendous potential application, attracting continued interest in pursuing further method development. In this paper, we give a brief introduction of SPI developments and look ahead to further method development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toward Single-particle Bioimaging Using X-ray Free-electron Lasers

In this paper we review the recent progress toward single-particle imaging of biological molecules at x-ray free-electron laser (XFEL) facilities. We describe the progression from biological imaging at synchrotrons to imaging at XFELs, discuss recent successes, and point out specific challenges associated with imaging at XFEL facilities.

متن کامل

Optimum driving a Z-pinch for soft X-Ray lasers

A capillary plasma z-pinch as an alternative active medium of soft X-Ray lasers was studied experimentally and theoretically. The theoretical analysis was based on the self consistent solution of the so called “snow plow” model. The dynamics of pinched plasma is determined by the capillary parameters and by the time dependence of electrical current passing through it. The current time dependenc...

متن کامل

The correlation of single-particle diffraction patterns as a continuous function of particle orientation.

A statistical model for X-ray scattering of a non-periodic sample to high angles is introduced. It is used to calculate analytically the correlation of distinct diffraction measurements of a particle as a continuous function of particle orientation. Diffraction measurements with shot-noise are also considered. This theory provides a general framework for a deeper understanding of single particl...

متن کامل

Single-particle structure determination by X-ray free-electron lasers: Possibilities and challenges

Single-particle structure recovery without crystals or radiation damage is a revolutionary possibility offered by X-ray free-electron lasers, but it involves formidable experimental and data-analytical challenges. Many of these difficulties were encountered during the development of cryogenic electron microscopy of biological systems. Electron microscopy of biological entities has now reached a...

متن کامل

Visualizing aerosol-particle injection for diffractive-imaging experiments.

Delivering sub-micrometer particles to an intense x-ray focus is a crucial aspect of single-particle diffractive-imaging experiments at x-ray free-electron lasers. Enabling direct visualization of sub-micrometer aerosol particle streams without interfering with the operation of the particle injector can greatly improve the overall efficiency of single-particle imaging experiments by reducing th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018