Personalizing Model M for Voice-Search

نویسندگان

  • Geoffrey Zweig
  • Shuangyu Chang
چکیده

Model M is a recently proposed class based exponential n-gram language model. In this paper, we extend it with personalization features, address the scalability issues present with large data sets, and test its effectiveness on the Bing Mobile voice-search task. We find that Model M by itself reduces both perplexity and word error rate compared with a conventional model, and that the personalization features produce a further significant improvement. The personalization features provide a very large improvement when the history contains a relevant query; thus the overall effect is gated by the number of times a user requeries a past request.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Context-based Statistical Models to Promote the Quality of Voice Conversion Systems

This article aims to examine methods of optimizing GMM-based voice conversion systems performance in which GMM method is introduced as the basic method for improvement of voice conversion systems performance. In the current methods, due to using a single conversion function to convert all speech units and subsequent spectral smoothing arising from statistical averaging, we will observe quality ...

متن کامل

Personalizing synthetic voices for people with progressive speech disorders: judging voice similarity

In building personalized synthetic voices for people with speech disorders, the output should capture the individual’s vocal identity. This paper reports a listener judgment experiment on the similarity of Hidden Markov Model based synthetic voices using varying amounts of adaptation data to two non-impaired speakers. We conclude that around 100 sentences of data is needed to build a voice that...

متن کامل

Personalizing the Search for Knowledge

Recent work on building semantic search engines has given rise to large graph-based knowledge repositories and facilities for querying them and more importantly, ranking the results. While the ranking provided may prove to be acceptable in general, for a truly satisfactory search experience, it is necessary to tailor the results according to the user’s interest. In this paper, we address the is...

متن کامل

Personalizing a speech synthesizer by voice adaptation

A voice adaptation system enables users to quickly create new voices for a text-to-speech system, allowing for the personalization of the synthesis output. The system adapts to the pitch and spectrum of the target speaker, using a probabilistic, locally linear conversion function based on a Gaussian Mixture Model. Numerical and perceptual evaluations reveal insights into the correlation between...

متن کامل

MOBILE WEB SEARCH PERSONALIZATION USING ONTOLOGICAL USER PROFILE by KAPIL GOENKA

by KAPIL GOENKA (Under the Direction of I. Budak Arpinar) ABSTRACT Most present day search engines have a deterministic behavior in the sense that they return the same search results for all users who submit the same query at a certain time. They do not take the userʼs interests and preferences into account in the retrieval process. Integrating user context in the retrieval process can help del...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011