Development of an injectable composite for bone regeneration

نویسندگان

  • Sylvaine Jacquart
  • Agathe Belime
  • Christel Pigasse
  • Robin Siadous
  • Mohammed Fatnassi
  • Solène Tadier
  • Rachel Auzély-Velty
  • Sophie Girod-Fullana
  • Reine Bareille
  • Christine Roques
  • S. Jacquart
  • R. Bareille
  • F. Anagnostou
  • A. Bignon
  • F. Brouillet
چکیده

With the development of minimally invasive surgical techniques, there is a growing interest in the research and development of injectable biomaterials especially for orthopedic applications. In a view to enhance the overall surgery benefits for the patient, the BIOSINJECT project aims at preparing a new generation of mineral-organic composites for bone regeneration exhibiting bioactivity, therapeutic activity and easiness of use to broaden the application domains of the actual bone mineral cements and propose an alternative strategy with regard to their poor resorbability, injectability difficulties and risk of infection. First, a physical-chemical study demonstrated the feasibility of self-setting injectable composites associating calcium carbonate-calcium phosphate cement and polysaccharides (tailor-made or commercial polymer) in the presence or not of an antibacterial agent within the composite formulation. Then, bone cell response and antimicrobial activity of the composite have been evaluated in vitro. Finally, in order to evaluate resorption rate and bone tissue response an animal study has been performed and the histological analysis is still in progress. These multidisciplinary and complementary studies led to promising results in a view of the industrial development of such composite for dental and orthopaedic applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconstruction of goat tibial defects using an injectable tricalcium phosphate/chitosan in combination with autologous platelet-rich plasma.

Injectable scaffolds held great promise for the reconstruction of bone defects. We prepared an injectable composite named PTC by combining TCP/chitosan (TC) with platelet-rich plasma (PRP). The objective of this study was to investigate the composite's mechanical and biological properties. First, we found that the introduction of PRP in TC showed no adverse effect on mechanical strength and tha...

متن کامل

A Novel Injectable Calcium Phosphate Cement-Bioactive Glass Composite for Bone Regeneration

BACKGROUND Calcium phosphate cement (CPC) can be molded or injected to form a scaffold in situ, which intimately conforms to complex bone defects. Bioactive glass (BG) is known for its unique ability to bond to living bone and promote bone growth. However, it was not until recently that literature was available regarding CPC-BG applied as an injectable graft. In this paper, we reported a novel ...

متن کامل

Bone Tissue Engineering: a Mini-Review

Despite advances in bone tissue engineering, auto grafts from intra-oral or extra-oral donor sites are still the gold standard for treatment of large craniomaxillofacial defects. Biomaterial development, application of growth factor, and stem cells, open new gateway to bone regeneration studies, but real translation from bench to bedside have not yet happened. In this review article, a number o...

متن کامل

Citrate-based Biodegradable Injectable hydrogel Composites for Orthopedic Applications.

Previous studies have confirmed that natural bone apatite crystals are bound with citrate-rich molecules. Citrates on apatite crystals impact bone development and its load-bearing function. However, such understanding has never been translated into bone biomaterials design. Herein, a first citrate-based injectable composite material for orthopedic applications is developed based on our recently...

متن کامل

A Novel Injectable Magnesium/Calcium Sulfate Hemihydrate Composite Cement for Bone Regeneration

OBJECTIVE . A novel injectable magnesium/calcium sulfate hemihydrate (Mg/CSH) composite with improved properties was reported here. METHODS Composition, setting time, injectability, compressive strength, and bioactivity in simulated body fluid (SBF) of the Mg/CSH composite were evaluated. Furthermore, the cellular responses of canine bone marrow stromal cells (cBMSCs) and bone formation capac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013