Analysis of the Golgi apparatus in Arabidopsis seed coat cells during polarized secretion of pectin-rich mucilage.

نویسندگان

  • Robin E Young
  • Heather E McFarlane
  • Michael G Hahn
  • Tamara L Western
  • George W Haughn
  • A Lacey Samuels
چکیده

Differentiation of the Arabidopsis thaliana seed coat cells includes a secretory phase where large amounts of pectinaceous mucilage are deposited to a specific domain of the cell wall. During this phase, Golgi stacks had cisternae with swollen margins and trans-Golgi networks consisting of interconnected vesicular clusters. The proportion of Golgi stacks producing mucilage was determined by immunogold labeling and transmission electron microscopy using an antimucilage antibody, CCRC-M36. The large percentage of stacks found to contain mucilage supports a model where all Golgi stacks produce mucilage synchronously, rather than having a subset of specialist Golgi producing pectin product. Initiation of mucilage biosynthesis was also correlated with an increase in the number of Golgi stacks per cell. Interestingly, though the morphology of individual Golgi stacks was dependent on the volume of mucilage produced, the number was not, suggesting that proliferation of Golgi stacks is developmentally programmed. Mapping the position of mucilage-producing Golgi stacks within developing seed coat cells and live-cell imaging of cells labeled with a trans-Golgi marker showed that stacks were randomly distributed throughout the cytoplasm rather than clustered at the site of secretion. These data indicate that the destination of cargo has little effect on the location of the Golgi stack within the cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flying saucer1 is a transmembrane RING E3 ubiquitin ligase that regulates the degree of pectin methylesterification in Arabidopsis seed mucilage.

Pectins are complex polysaccharides that form the gel matrix of the primary cell wall and are abundant in the middle lamella that holds plant cells together. Their degree of methylesterification (DM) impacts wall strength and cell adhesion since unesterified pectin regions can cross-link via Ca(2+) ions to form stronger gels. Here, we characterize flying saucer1 (fly1), a novel Arabidopsis thal...

متن کامل

Differentiation of mucilage secretory cells of the Arabidopsis seed coat.

In some plant species, including Arabidopsis, fertilization induces the epidermal cells of the outer ovule integument to differentiate into a specialized seed coat cell type with a unique morphology and containing large quantities of polysaccharide mucilage (pectin). Such seed coat mucilage cells are necessary for neither viability nor germination under normal laboratory conditions. Thus, the A...

متن کامل

Seed coat mucilage cells of Arabidopsis thaliana as a model for plant cell wall research.

Plant cells are encased within a complex polysaccharide wall that strengthens the cell and has key roles in all aspects of plant cell growth, differentiation, and interaction with the environment. This dynamic structure is under continual modification during plant development, and its synthesis and modification require the activity of a myriad of enzymes. The mucilage secretory cells (MSCs) of ...

متن کامل

Arabidopsis Seed Coat Mucilage is a Specialized Cell Wall that Can be Used as a Model for Genetic Analysis of Plant Cell Wall Structure and Function

Arabidopsis seed coat epidermal cells produce a large quantity of mucilage that is extruded upon exposure to water. Chemical analyses and cell biological techniques suggest that this mucilage represents a specialized type of secondary cell wall composed primarily of pectin with lesser amounts of cellulose and xyloglucan. Once extruded, the mucilage capsule has a distinctive structure with an ou...

متن کامل

Changing spaces: the Arabidopsis mucilage secretory cells as a novel system to dissect cell wall production in differentiating cells1

As the outer boundary of plant cells, the cell wall is integral to all aspects of plant growth, development, and interactions with the environment. Dicot primary cell walls are composed of a network of cellulose, hemicellulose and proteins embedded in a matrix of acidic pectins. Pectins are synthesized in the Golgi apparatus by the sequential addition of nucleotide sugars by glycosyltransferase...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 20 6  شماره 

صفحات  -

تاریخ انتشار 2008