Chlorella virus RNA triphosphatase. Mutational analysis and mechanism of inhibition by tripolyphosphate.
نویسندگان
چکیده
Chlorella virus RNA triphosphatase (cvRtp1) is the smallest member of a family of metal-dependent phosphohydrolases that includes the RNA triphosphatases of fungi, protozoa, poxviruses, and baculoviruses. The primary structure of cvRtp1 is more similar to that of the yeast RNA triphosphatase Cet1 than it is to the RNA triphosphatases of other DNA viruses. To evaluate the higher order structural similarities between cvRtp1 and the fungal enzymes, we performed an alanine scan of individual residues of cvRtp1 that were predicted, on the basis of the crystal structure of Cet1, to be located at or near the active site. Twelve residues (Glu(24), Glu(26), Asp(64), Arg(76), Lys(90), Glu(112), Arg(127), Lys(129), Arg(131), Asp(142), Glu(163), and Glu(165)) were deemed essential for catalysis by cvRtp1, insofar as their replacement by alanine reduced phosphohydrolase activity to <5% of the wild-type value. Structure-activity relationships were elucidated by introducing conservative substitutions at the essential positions. The mutational results suggest that the active site of cvRtp1 is likely to adopt a tunnel fold like that of Cet1 and that a similar constellation of side chains within the tunnel is responsible for metal binding and reaction chemistry. Nonetheless, there are several discordant mutational effects in cvRtp1 versus Cet1, which suggest that different members of the phosphohydrolase family vary in their reliance on certain residues within the active site tunnel. We found that tripolyphosphate and pyrophosphate were potent competitive inhibitors of cvRtp1 (K(i) = 0.6 microm tripolyphosphate and 2.4 microm pyrophosphate, respectively), whereas phosphate had little effect. cvRtp1 displayed a weak intrinsic tripolyphosphatase activity (3% of its ATPase activity) but was unable to hydrolyze pyrophosphate.
منابع مشابه
Inhibition of a metal-dependent viral RNA triphosphatase by decavanadate.
Paramecium bursaria chlorella virus, a large DNA virus that replicates in unicellular Chlorella-like algae, encodes an RNA triphosphatase which is involved in the synthesis of the RNA cap structure found at the 5' end of the viral mRNAs. The Chlorella virus RNA triphosphatase is the smallest member of the metal-dependent RNA triphosphatases that include enzymes from fungi, DNA viruses, protozoa...
متن کاملPhylogeny of mRNA capping enzymes.
The m7GpppN cap structure of eukaryotic mRNA is formed cotranscriptionally by the sequential action of three enzymes: RNA triphosphatase, RNA guanylyltransferase, and RNA (guanine-7)-methyltransferase. A multifunctional polypeptide containing all three active sites is encoded by vaccinia virus. In contrast, fungi and Chlorella virus encode monofunctional guanylyltransferase polypeptides that la...
متن کاملPomegranate peel extract inhibits internalization and replication of the influenza virus: An in vitro study
Objective: Influenza virus, which is associated with high level of morbidity and mortality, has been recently considered a public health concern; however, the methods of choice to control and treat it are limited. Our previous study showed anti-influenza virus activity of pomegranate peel extract (PPE). In this study, the mechanism through which PPE acts against influenza virus...
متن کاملMagnesium-binding studies reveal fundamental differences between closely related RNA triphosphatases
The Chlorella virus RNA triphosphatase (cvRTPase) is involved in the formation of the RNA cap structure found at the 5'-end of the viral mRNAs and requires magnesium ions to mediate its catalytic activity. To extend our studies on the role of metal ions in phosphohydrolysis, we have used a combination of fluorescence spectroscopy, circular dichroism, denaturation studies and thermodynamic analy...
متن کاملInhibition of viral replication by ribozyme: mutational analysis of the site and mechanism of antiviral activity.
A controlled mutational study was used to determine the site and mechanism of the antiviral action of ribozymes that inhibit Sindbis virus replication. A hairpin ribozyme targeting G575 of the Sindbis virus genomic RNA was designed and cloned into a minimized alphavirus amplicon vector. Cells that were stably transfected with this construct expressed low levels of a constitutive transcript cont...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 277 18 شماره
صفحات -
تاریخ انتشار 2002