Design Optimization of a Fully-compliant Bistable Micro-mechanism

نویسندگان

  • Brian D. Jensen
  • Matthew B. Parkinson
  • Katsuo Kurabayashi
  • Larry L. Howell
  • Michael S. Baker
چکیده

Bistable behavior is desirable for a variety of applications because power is applied only during switching, and the mechanism state remains the same regardless of any power interruptions. The low variability in the stable positions also makes accurate open-loop control of many systems possible, and the precise switching characteristics make them valuable in sensing arrays. In this paper, fully-compliant bistable micromechanisms were modeled using finite elements. This model was then coupled with an optimization program, allowing extensive exploration of the design space. Three designs within this space were generated by minimizing the layout size of the devices subject to force constraints. These designs were subsequently manufactured and tested to verify bistability, with each mechanism snapping as expected between the two stable positions. The design space was then further explored to determine the behavior of the device as the maximum force output increased. This study revealed that the minimum layout size increases with the maximum force output.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reliability-Based Design Optimization for Shape Design of Compliant Micro-Electro-Mechanical Systems

Reliability methods are probabilistic algorithms for quantifying the effect of uncertainties on response metrics of interest. In particular, they compute approximate response function distribution statistics (probability, reliability, and response levels) based on specified probability distributions for input random variables. In conjunction with simulation software, these reliability analysis ...

متن کامل

Linkage factors optimization of Multi-outputs of compliant mechanism using Response Surface

This paper presents a linkage factors synthesis and multi-level optimization technique for bi-stable compliant mechanism. The linkage synthesis problem is modeled as multiple level factors and responses optimization problem with constraints. The bi-stable compliant mechanism is modeled as a crank slider mechanism using pseudo-rigid-body model (PRBM). The model exerts the large deflection of fle...

متن کامل

Enumeration of Optimal Pin-Jointed Bistable Compliant Mechanisms

Recently, a new type of mechanism called compliant mechanism has been developed and applied mainly in the field of micro-mechanics. A compliant mechanism has flexible parts to stabilize the structure, which is contrary to the conventional unstable mechanism. Although a compliant mechanism is usually modeled as a continuum with elastic joints, it is possible to generate the similar mechanism by ...

متن کامل

Bistable Configurations of Compliant Mechanisms Modeled Using Four Links and Translational Joints

Bistable mechanical devices remain stable in two distinct positions without power input. They find application in valves, switches, closures, and clasps. Mechanically bistable behavior results from the storage and release of energy, typically in springs, with stable positions occurring at local minima of stored energy. Compliant mechanisms offer an elegant way to achieve this behavior by incorp...

متن کامل

Design and Dynamic Modeling of Planar Parallel Micro-Positioning Platform Mechanism with Flexible Links Based on Euler Bernoulli Beam Theory

This paper presents the dynamic modeling and design of micro motion compliant parallel mechanism with flexible intermediate links and rigid moving platform. Modeling of mechanism is described with closed kinematic loops and the dynamic equations are derived using Lagrange multipliers and Kane’s methods. Euler-Bernoulli beam theory is considered for modeling the intermediate flexible link. Based...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001