Docking and chemoinformatic screens for new ligands and targets.
نویسندگان
چکیده
Computer-based docking screens are now widely used to discover new ligands for targets of known structure; in the last two years alone, the discovery of ligands for more than 20 proteins has been reported. Recently, investigators have also turned to predicting new substrates for enzymes of unknown function, taking docking in a wholly new direction. Increasingly, the hit rates, the true-positives, and the false-positives from the docking screens are being compared to those from empirical, high-throughput screens, revealing the strengths, weaknesses, and complementarities of both techniques. The recent efflorescence of GPCR structures has made these quintessential drug targets available to structure-based approaches. Consistent with their 'druggability', the docking screens have returned high hit rates and potent molecules. Finally, in the last several years, an approach almost exactly opposite to docking has also appeared; this pharmacological network approach begins not with the structure of the target but rather those of drug molecules and asks, given a pattern of chemistry in the ligands, what targets may a particular drug bind to? This method, which returns to an older, pharmacology logic, has been surprisingly successful in predicting new 'off-targets' for established drugs.
منابع مشابه
Ligand-based pharmacophore modeling to identify plant-derived acetylcholinesterase inhibitor natural compounds in Alzheimer’s disease
Background: Alzheimer’s disease (AD) is a neurodegenerative disease characterized by decreased cognitive function in patients due to forming Aβ peptides and neurofibrillary tangles (NFT) in the brain. Therefore, the need to develop new treatments can reduce this risk. Acetylcholinesterase is one of the targets used in the design of new drugs for the treatment of AD. The researchers obtain new i...
متن کاملMultitarget Drug Design, Molecular Docking and PLIF Studies of Novel Tacrine−Coumarin Hybrids for the Treatment of Alzheimer’s Disease
Alzheimer’s disease (AD) as a complicated and progressive neurodegenerative disorder is the most common form of dementia and memory loss. On account of the multifactorial etiology of AD, the multi-target-directed ligand (MTDL) approach is a promising method in searching new drug candidates for this disease. Here, in this paper more than 500 tacrine-coumarin hybrids have been designed and drug-l...
متن کاملMultitarget Drug Design, Molecular Docking and PLIF Studies of Novel Tacrine−Coumarin Hybrids for the Treatment of Alzheimer’s Disease
Alzheimer’s disease (AD) as a complicated and progressive neurodegenerative disorder is the most common form of dementia and memory loss. On account of the multifactorial etiology of AD, the multi-target-directed ligand (MTDL) approach is a promising method in searching new drug candidates for this disease. Here, in this paper more than 500 tacrine-coumarin hybrids have been designed and drug-l...
متن کاملIncorporation of protein flexibility and conformational energy penalties in docking screens to improve ligand discovery
Proteins fluctuate between alternative conformations, which presents a challenge for ligand discovery because such flexibility is difficult to treat computationally owing to problems with conformational sampling and energy weighting. Here we describe a flexible docking method that samples and weights protein conformations using experimentally derived conformations as a guide. The crystallograph...
متن کاملExploiting ordered waters in molecular docking.
A current weakness in docking is the treatment of water-mediated protein-ligand interactions. We explore switching ordered water molecules "on" and "off" during docking screens of a large library. The method assumes additivity and scales linearly with the number of waters sampled despite the exponential growth in configurations. It is tested for ligand enrichment against 24 targets, exploring u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current opinion in biotechnology
دوره 20 4 شماره
صفحات -
تاریخ انتشار 2009