M3IC: Maximum Margin Multiple Instance Clustering
نویسندگان
چکیده
Clustering, classification, and regression, are three major research topics in machine learning. So far, much work has been conducted in solving multiple instance classification and multiple instance regression problems, where supervised training patterns are given as bags and each bag consists of some instances. But the research on unsupervised multiple instance clustering is still limited . This paper formulates a novel Maximum Margin Multiple Instance Clustering (MIC) problem for the multiple instance clustering task. To avoid solving a nonconvex optimization problem directly, MIC is further relaxed, which enables an efficient optimization solution with a combination of Constrained Concave-Convex Procedure (CCCP) and the Cutting Plane method. Furthermore, this paper analyzes some important properties of the proposed method and the relationship between the proposed method and some other related ones. An extensive set of empirical results demonstrate the advantages of the proposed method against existing research for both effectiveness and efficiency.
منابع مشابه
Multiple Kernel Clustering
Maximum margin clustering (MMC) has recently attracted considerable interests in both the data mining and machine learning communities. It first projects data samples to a kernel-induced feature space and then performs clustering by finding the maximum margin hyperplane over all possible cluster labelings. As in other kernel methods, choosing a suitable kernel function is imperative to the succ...
متن کاملM4L: Maximum margin Multi-instance Multi-cluster Learning for scene modeling
Automatically learning and grouping key motion patterns in a traffic scene captured by a static camera is a fundamental and challenging task for intelligent video surveillance. To learn motion patterns, trajectory obtained by object tracking is parameterized, and scene image is spatially and evenly divided into multiple regular cell blocks which potentially contain several primary motion patter...
متن کاملGeneralized Maximum Margin Clustering and Unsupervised Kernel Learning
Maximum margin clustering was proposed lately and has shown promising performance in recent studies [1, 2]. It extends the theory of support vector machine to unsupervised learning. Despite its good performance, there are three major problems with maximum margin clustering that question its efficiency for real-world applications. First, it is computationally expensive and difficult to scale to ...
متن کاملLatent Maximum Margin Clustering
We present a maximum margin framework that clusters data using latent variables. Using latent representations enables our framework to model unobserved information embedded in the data. We implement our idea by large margin learning, and develop an alternating descent algorithm to effectively solve the resultant non-convex optimization problem. We instantiate our latent maximum margin clusterin...
متن کاملMaximum Margin Temporal Clustering
Temporal Clustering (TC) refers to the factorization of multiple time series into a set of non-overlapping segments that belong to k temporal clusters. Existing methods based on extensions of generative models such as k-means or Switching Linear Dynamical Systems (SLDS) often lead to intractable inference and lack a mechanism for feature selection, critical when dealing with high dimensional da...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009