Left-right asymmetric cell intercalation drives directional collective cell movement in epithelial morphogenesis.
نویسندگان
چکیده
Morphogenetic epithelial movement occurs during embryogenesis and drives complex tissue formation. However, how epithelial cells coordinate their unidirectional movement while maintaining epithelial integrity is unclear. Here we propose a novel mechanism for collective epithelial cell movement based on Drosophila genitalia rotation, in which epithelial tissue rotates clockwise around the genitalia. We found that this cell movement occurs autonomously and requires myosin II. The moving cells exhibit repeated left-right-biased junction remodelling, while maintaining adhesion with their neighbours, in association with a polarized myosin II distribution. Reducing myosinID, known to cause counter-clockwise epithelial-tissue movement, reverses the myosin II distribution. Numerical simulations revealed that a left-right asymmetry in cell intercalation is sufficient to induce unidirectional cellular movement. The cellular movement direction is also associated with planar cell-shape chirality. These findings support a model in which left-right asymmetric cell intercalation within an epithelial sheet drives collective cellular movement in the same direction.
منابع مشابه
Asymmetric involution of the myocardial field drives heart tube formation in zebrafish.
Many vertebrate organs are derived from monolayered epithelia that undergo morphogenesis to acquire their shape. Whereas asymmetric left/right gene expression within the zebrafish heart field has been well documented, little is known about the tissue movements and cellular changes underlying early cardiac morphogenesis. Here, we demonstrate that asymmetric involution of the myocardium of the ri...
متن کاملIntegration of left-right Pitx2 transcription and Wnt signaling drives asymmetric gut morphogenesis via Daam2.
A critical aspect of gut morphogenesis is initiation of a leftward tilt, and failure to do so leads to gut malrotation and volvulus. The direction of tilt is specified by asymmetric cell behaviors within the dorsal mesentery (DM), which suspends the gut tube, and is downstream of Pitx2, the key transcription factor responsible for the transfer of left-right (L-R) information from early gastrula...
متن کاملUnilateral dampening of Bmp activity by nodal generates cardiac left-right asymmetry.
Signaling by Nodal and Bmp is essential for cardiac laterality. How activities of these pathways translate into left-right asymmetric organ morphogenesis is largely unknown. We show that, in zebrafish, Nodal locally reduces Bmp activity on the left side of the cardiac field. This effect is mediated by the extracellular matrix enzyme Hyaluronan synthase 2, expression of which is induced by Nodal...
متن کاملChiral forces organize left-right patterning in C. elegans by uncoupling midline and anteroposterior axis.
Left-right (LR) patterning is an intriguing but poorly understood process of bilaterian embryogenesis. We report a mechanism for LR patterning in C. elegans in which the embryo uncouples its midline from the anteroposterior (AP) axis. Specifically, the eight-cell embryo establishes a midline that is tilted rightward from the AP axis and positions more cells on the left, allowing subsequent diff...
متن کاملRemodelling epithelial tubes through cell rearrangements: from cells to molecules.
Epithelial cell movements, such as those that occur during cell intercalation, largely contribute to the formation of epithelial structures during the morphogenesis of multicellular organisms. As the architecture of epithelial tissues relies on strong adhesion between cells at adherens junctions (AJs), the intercalation or rearrangements of epithelial cells might be controlled by modulating the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nature communications
دوره 6 شماره
صفحات -
تاریخ انتشار 2015