Towards a Chaotic Probability Model for Frequentist Probability: The Univariate Case
نویسندگان
چکیده
We adopt the same mathematical model of a set M of probability measures as is central to the theory of coherent imprecise probability. However, we endow this model with an objective, frequentist interpretation in place of a behavioral subjective one. We seek to use M to model stable physical sources of time series data that have highly irregular behavior and not to model states of belief or knowledge that are assuredly imprecise. The approach we present in this paper is to understand a set of measures model M not as a traditional compound hypothesis, in which one of the measures in M is a true description, but rather as one in which none of the individual measures in M provides an adequate description of the potential behavior of the physical source as actualized in the form of a long time series. We provide an instrumental interpretation of random process measures consistent with M and the highly irregular physical phenomena we intend to model by M. This construction provides us with the basic tools for simulation of our models. We present a method to estimate M from data which studies any given data sequence by analyzing it into subsequences selected by a set of computable rules. We prove results that help us to choose an adequate set of rules and evaluate the performance of the estimator.
منابع مشابه
Comparison between Frequentist Test and Bayesian Test to Variance Normal in the Presence of Nuisance Parameter: One-sided and Two-sided Hypothesis
This article is concerned with the comparison P-value and Bayesian measure for the variance of Normal distribution with mean as nuisance paramete. Firstly, the P-value of null hypothesis is compared with the posterior probability when we used a fixed prior distribution and the sample size increases. In second stage the P-value is compared with the lower bound of posterior probability when the ...
متن کاملA simple analysis of the exact probability matching prior in the location-scale model
It has long been asserted that in univariate location-scale models, when concerned with inference for either the location or scale parameter, the use of the inverse of the scale parameter as a Bayesian prior yields posterior credible sets which have exactly the correct frequentist confidence set interpretation. This claim dates to at least Peers (1965), and has subsequently been noted by variou...
متن کاملEstimation of Chaotic Probabilities
A Chaotic Probability model is a usual set of probability measures, M, the totality of which is endowed with an objective, frequentist interpretation as opposed to being viewed as a statistical compound hypothesis or an imprecise behavioral subjective one. In the prior work of Fierens and Fine, given finite time series data, the estimation of the Chaotic Probability model is based on the analys...
متن کاملComparison of Bayesian and Frequentist Methods in Estimating the Net Reclassification and Integrated Discrimination Improvement Indices for Evaluation of Prediction Models: Tehran Lipid and Glucose Study
Introduction: The Frequency-based method is commonly used to estimate the Net Reclassification Improvement (NRI)- and Integrated Discrimination Improvement (IDI) indices. These indices measure the magnitude of the performance of statistical models when a new biomarker is added. This method has poor performance in some cases, especially in small samples. In this study, the performance of two Bay...
متن کاملThe Assessment of Applying Chaos Theory for Daily Traffic Estimation
Road traffic volumes in intercity roads are generally estimated by probability functions, statistical techniques or meta-heuristic approaches such as artificial neural networks. As the road traffic volumes depend on input variables and mainly road geometrical design, weather conditions, day or night time, weekend or national holidays and so on, these are also estimated by pattern recognition te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003