Aberrant histone modification in endometriosis.

نویسندگان

  • Kaei Nasu
  • Yukie Kawano
  • Kentaro Kai
  • Yoko Aoyagi
  • Wakana Abe
  • Mamiko Okamoto
  • Hisashi Narahara
چکیده

Accumulating evidence suggests that epigenetic aberrations play definite roles in the pathogenesis of endometriosis. These include aberrations in genomic DNA methylation, microRNA expression, and histone modification. The aberrant histone modification status and the aberrant expression of histone deacetylases, which regulate histone acetylation, in endometriosis are the focus of this review. Herein, we summarize the recent studies in the following areas: (i) hyperacetylation of histones located in the promoter lesions of G-protein-coupled estrogen receptor 1, steroidogenic factor-1, and hypoxia-inducible factor-1 alpha genes and (ii) hypoacetylation of histones located in the promoter lesions of estrogen receptor alpha, homeobox A10, CCAAT/enhancer-binding protein alpha, p16(INK4a), p21(Waf1/Cip1), p27(Kip1), checkpoint kinase 2, death receptor 6, and E-cadherin genes. Further research from the viewpoint of epigenetics may lead to the identification of the candidate molecules that are aberrantly expressed in endometriosis and may help elucidate the pathogenesis of this disease. In addition, epigenetic drugs (including histone deacetylase inhibitors) show promise for the treatment of endometriosis by amending the expression of these epigenetically dysregulated genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-29: Aberrant Methylation of Lysine 9 on Histone 3 in PII Promoter of CYP19A1 Gene in Women with Endometriosis

Background Cytochrome aromatase p450, encoded by the gene CYP19A1, is a key enzyme for estrogen biosynthesis. Among the multiple promoters of CYP19A1, the proximal promoter PII is the most active ones in ovary and endometrium. Endometriosis is a chronic estrogen dependent gynecological condition characterized by the presence of ectopic glands and stroma outside the uterine cavity. Recently, evi...

متن کامل

The Impression of Histone Modification and DNA Methylation in Gastric Cancer Development: Molecular Mechanism Approach

The epigenetic alterations like histone modifications , DNA methylation and others remarkable categories  including nucleosome remodeling and RNA mediated targeting have been strongly investigated  recently .In this way , beside the notable importance of DNA methylation ,the histone modifications are the most important issues in the  tumorogenesis and cancer progression. Moreover...

متن کامل

Epigenetic regulation of the pathological process in endometriosis

Background Endometriosis is one of the most common gynecological diseases that greatly compromises the quality of life in affected individuals. A growing body of evidence shows that the remodeling of retrograde endometrial tissues to the ectopic endometriotic lesions involves multiple epigenetic alterations, such as DNA methylation, histone modification, and microRNA expression. Methods This ...

متن کامل

Effect of trichostatin A on histone deacetylase 1 (HDAC 1) and CIP/KIP (p21CIP1/WAF1, p27KIP1, and p57KIP2) gene expression, cell growth inhibition and apoptosis induction in lung cancer COR-L105 cell line. Abstract

Effect of trichostatin A on histone deacetylase 1 (HDAC 1) and CIP/KIP (p21CIP1/WAF1, p27KIP1, and p57KIP2) gene expression, cell growth inhibition and apoptosis induction in lung cancer COR-L105 cell line. Abstract Background: Lung cancer is one the leading cause of cancer-related death worldwide, with more than 1.2 million deaths each year. In addition to genetic mutations, epigenetic modif...

متن کامل

O-31: Epigenetic Aberration of HOXA10 Gene in Human Endometrium throughout The Menstrual Cycle in Endometriosis

Background: Epigenetic aberration such as DNA methylation and histone modifications appear to be involved in various diseases such as Endometriosis. Here, we investigated the epigenetic regulation of HOXA10 promoter, as a crucial gene, responsible for uterine organogenesis, functional endometrial differentiation and endometrial receptivity, and its correlation with mRNA expression of this gene ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in bioscience

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2014