Photothermal cantilever deflection spectroscopy

نویسندگان

  • Seonghwan Kim
  • Dongkyu Lee
  • Thomas Thundat
چکیده

Microcantilever sensors offer high sensitivity in the detection of adsorbed molecules based either on resonance frequency shift or changes in cantilever deflection, as both of these signals can be detected with very high resolution. Despite the high sensitivity offered by this platform, cantilevers suffer from poor selectivity due to the lack of sufficiently selective interfacial layers which can be immobilized on cantilever surfaces. This problem can be overcome by using photothermal cantilever deflection spectroscopy (PCDS), which exploits the high thermomechanical sensitivity of bi-material microcantilevers. A bi-material cantilever responds to heat generated by the nonradiative decay process when the adsorbed molecules are resonantly excited with infrared (IR) light. The variation in the cantilever deflection as a function of illuminating IR wavelength corresponds to the conventional IR absorption spectrum of the adsorbed molecules. In addition, the mass of the adsorbed molecules can be determined by measuring the resonance frequency shift of the cantilever as an orthogonal signal for the quantitative analysis. This multi-modal PCDS offers unprecedented opportunities for obtaining very high selectivity in chemical and biological sensing without using selective interfacial layers or extrinsic labels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photothermal cantilever actuation for fast single-molecule force spectroscopy.

Photothermal cantilever excitation provides a fast and easy to implement means to control the deflection of standard atomic force microscopy cantilevers. Minute heat pulses yield deflections on the order of several tens of nanometers or when the deflection is kept constant, forces of several hundreds of piconewton can be applied. In our case these pulses resulted in less than 1 K temperature ch...

متن کامل

Clustering mechanism of ethanol-water mixtures investigated with photothermal microfluidic cantilever deflection spectroscopy.

The infrared-active (IR) vibrational mode of ethanol (EtOH) associated with the asymmetrical stretching of the C-C-O bond in pico-liter volumes of EtOH-water binary mixtures is calorimetrically measured using photothermal microfluidic cantilever deflection spectroscopy (PMCDS). IR absorption by the confined liquid results in wavelength dependent cantilever deflections, thus providing a compleme...

متن کامل

Photothermal deflection spectroscopy and detection.

The theory for a sensitive spectroscopy based on the photothermal deflection of a laser beam is developed. We consider cw and pulsed cases of both transverse and collinear photothermal deflection spectroscopy for solids, liquids, gases, and thin films. The predictions of the theory are experimentally verified, its implications for imaging and microscopy are given, and the sources of noise are a...

متن کامل

DYE JET VELOCITY DISTRIBUTION MEASUREMENTS USING PHOTOTHERMAL DEFLECTION SPECTROSCOPY

We demonstrate that photothermal deflection spectroscopy can be used to measure velocity distributions in dye jets. Such measurements are useful in determining the quality of flow in dye jets, The quality of jets is very important for a stable and naanow linewidth operation of dye lasers

متن کامل

Tip-sample distance control using photothermal actuation of a small cantilever for high-speed atomic force microscopy.

We have applied photothermal bending of a cantilever induced by an intensity-modulated infrared laser to control the tip-surface distance in atomic force microscopy. The slow response of the photothermal expansion effect is eliminated by inverse transfer function compensation. By regulating the laser power and regulating the cantilever deflection, the tip-sample distance is controlled; this ena...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014