Adiabatic Shear Bands in Functionally Graded Materials

نویسنده

  • R. C. Batra
چکیده

The initiation and propagation of adiabatic shear bands (ASBs) in functionally graded materials (FGMs) deformed at high strain rates in plane-strain tension have been studied. An ASB is a narrow region, usually a few micrometers wide, of intense plastic deformation that forms after softening of the material due to its being heated up and the evolution of damage in the form of porosity has overcome its hardening due to strain and strain-rate effects. An FGM is usually composed of two or more constituents with material properties varying continuously through it; the one studied here is made of tungsten particles interspread in a NiFe matrix. Each constituent and the composite are modeled as heat-conducting, microporous, strain and strain-rate hardening, and thermally softening materials with material parameters of the composite derived from those of its constituents by the rule of mixtures. They obey the Johnson Cook thermoviscoplastic relation, the Gurson-type flow potential, the associated flow rule, and a hyperbolic heat equation. The degradation of thermophysical parameters with the evolution of damage is accounted for with porosity representing the damage. With origin at the centroid of a square cross section, the volume fraction of each phase is assumed to vary radially until a boundary point on the square cross section is reached and then to stay constant. It is found that an ASB, aligned along the direction of the maximum shear stress, forms sooner in an FGM than in either of the two constituent materials with its location, orientation, pattern, and speed depending on the compositional profile.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element Analysis of Functionally Graded Skew Plates in Thermal Environment based on the New Third-order Shear Deformation Theory

Functionally graded materials are commonly used in thermal environment to change the properties of constituent materials. The new numerical procedure of functionally graded skew plates in thermal environment is presented in this study based on the C0-form of the novel third-order shear deformation theory. Without the shear correction factor, this theory is also taking the desirable properties a...

متن کامل

Vibration Analysis of Functionally Graded Spinning Cylindrical Shells Using Higher Order Shear Deformation Theory

In this paper the vibration of a spinning cylindrical shell made of functional graded material is investigated. After a brief introduction of FG materials, by employing higher order theory for shell deformation, constitutive relationships are derived. Next, governing differential equation of spinning cylindrical shell is obtained through utilizing energy method and Hamilton’s principle. Making ...

متن کامل

A refined inverse hyperbolic shear deformation theory for bending analysis of functionally graded porous plates

The modern engineering structures require the advanced engineering materials to resist the high temperatures and to provide high stiffness. In particular the functionally graded porous materials (FGPMs) introduced are expected to have these desired properties, consequently eliminating local stress concentration and de-lamination. In the present paper, a new shear strains shape function is chose...

متن کامل

Bending analysis of magneto-electro-thermo-elastic functionally graded nanobeam based on first order shear deformation theory

In this research, analysis of nonlocal magneto-electro-thermo-elastic of a functionally graded nanobeamdue to magneto-electro-elastic loads has been done. In order to formulate the problem the Timoshenko theory of beams is utilized. The principle of virtual work, Hamilton’s principle as well as nonlocal magneto-electro-thermo-elastic relations has been recruited to derive the governing eq...

متن کامل

A Zigzag Theory with Local Shear Correction Factors for Semi-Analytical Bending Modal Analysis of Functionally Graded Viscoelastic Circular Sandwich Plates

Free bending vibration analysis of the functionally graded viscoelastic circular sandwich plates is accomplished in the present paper, for the first time. Furthermore, local shear corrections factors are presented that may consider simultaneous effects of the gradual variations of the material properties and the viscoelastic behaviors of the materials, for the first time. Moreover, in contrast ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004