Active Inference, epistemic value, and vicarious trial and error.

نویسندگان

  • Giovanni Pezzulo
  • Emilio Cartoni
  • Francesco Rigoli
  • Léo Pio-Lopez
  • Karl Friston
چکیده

Balancing habitual and deliberate forms of choice entails a comparison of their respective merits-the former being faster but inflexible, and the latter slower but more versatile. Here, we show that arbitration between these two forms of control can be derived from first principles within an Active Inference scheme. We illustrate our arguments with simulations that reproduce rodent spatial decisions in T-mazes. In this context, deliberation has been associated with vicarious trial and error (VTE) behavior (i.e., the fact that rodents sometimes stop at decision points as if deliberating between choice alternatives), whose neurophysiological correlates are "forward sweeps" of hippocampal place cells in the arms of the maze under consideration. Crucially, forward sweeps arise early in learning and disappear shortly after, marking a transition from deliberative to habitual choice. Our simulations show that this transition emerges as the optimal solution to the trade-off between policies that maximize reward or extrinsic value (habitual policies) and those that also consider the epistemic value of exploratory behavior (deliberative or epistemic policies)-the latter requiring VTE and the retrieval of episodic information via forward sweeps. We thus offer a novel perspective on the optimality principles that engender forward sweeps and VTE, and on their role on deliberate choice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active inference and epistemic value.

We offer a formal treatment of choice behavior based on the premise that agents minimize the expected free energy of future outcomes. Crucially, the negative free energy or quality of a policy can be decomposed into extrinsic and epistemic (or intrinsic) value. Minimizing expected free energy is therefore equivalent to maximizing extrinsic value or expected utility (defined in terms of prior pr...

متن کامل

Potential Assessment of ANNs and Adaptative Neuro Fuzzy Inference systems (ANFIS) for Simulating Soil Temperature at diffrent Soil Profile Depths

Objective: Soil temperature serves as a key variable in hydrological investigations to determine soil moisture content as well as hydrological balance in watersheds. The ingoing research aims to shed lights on potential of artificial neural networks (ANNs) and Neuro-Fuzzy inference system (ANFIS) to simulate soil temperature at 5-100 cm depths. To satisfy this end, climatic and...

متن کامل

Potential Assessment of ANNs and Adaptative Neuro Fuzzy Inference systems (ANFIS) for Simulating Soil Temperature at diffrent Soil Profile Depths

Objective: Soil temperature serves as a key variable in hydrological investigations to determine soil moisture content as well as hydrological balance in watersheds. The ingoing research aims to shed lights on potential of artificial neural networks (ANNs) and Neuro-Fuzzy inference system (ANFIS) to simulate soil temperature at 5-100 cm depths. To satisfy this end, climatic and...

متن کامل

The Role of Vicarious Trial-And-Error in a T-Maze Task

Vicarious trial-and-error(VTE) is a type of conflictlike behavior, observed in route selection tasks where rats have been observed evaluating their possibilities before moving toward one route [1]. Studies of VTE have shown a correlation between the number of VTEs exhibited by a system with its learning efficiency. At the onset of learning a task, the number of VTEs increases, and when the lear...

متن کامل

Forecasting Industrial Production in Iran: A Comparative Study of Artificial Neural Networks and Adaptive Nero-Fuzzy Inference System

Forecasting industrial production is essential for efficient planning by managers. Although there are many statistical and mathematical methods for prediction, the use of intelligent algorithms with desirable features has made significant progress in recent years. The current study compared the accuracy of the Artificial Neural Networks (ANN) and Adaptive Nero-Fuzzy Inference System (ANFIS) app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Learning & memory

دوره 23 7  شماره 

صفحات  -

تاریخ انتشار 2016