Sparse Estimation with Strongly Correlated Variables using Ordered Weighted `1 Regularization
نویسندگان
چکیده
This paper studies ordered weighted `1 (OWL) norm regularization for sparse estimation problems with strongly correlated variables. We prove sufficient conditions for clustering based on the correlation/colinearity of variables using the OWL norm, of which the so-called OSCAR [4] is a particular case. Our results extend previous ones for OSCAR in several ways: for the squared error loss, our conditions hold for the more general OWL norm and under weaker assumptions; we also establish clustering conditions for the absolute error loss, which is, as far as we know, a novel result. Furthermore, we characterize the statistical performance of OWL norm regularization for generative models in which certain clusters of regression variables are strongly (even perfectly) correlated, but variables in different clusters are uncorrelated. We show that if the true p-dimensional signal generating the data involves only s of the clusters, thenO(s log p) samples suffice to accurately estimate the signal, regardless of the number of coefficients within the clusters. The estimation of s-sparse signals with completely independent variables requires just as many measurements. In other words, using the OWL we pay no price (in terms of the number of measurements) for the presence of strongly correlated variables.
منابع مشابه
Ordered Weighted `1 Regularized Regression with Strongly Correlated Covariates: Theoretical Aspects
This paper studies the ordered weighted `1 (OWL) family of regularizers for sparse linear regression with strongly correlated covariates. We prove sufficient conditions for clustering correlated covariates, extending and qualitatively strengthening previous results for a particular member of the OWL family: OSCAR (octagonal shrinkage and clustering algorithm for regression). We derive error bou...
متن کاملOrdered Weighted L1 Regularized Regression with Strongly Correlated Covariates: Theoretical Aspects
This paper studies the ordered weighted `1 (OWL) family of regularizers for sparse linear regression with strongly correlated covariates. We prove sufficient conditions for clustering correlated covariates, extending and qualitatively strengthening previous results for a particular member of the OWL family: OSCAR (octagonal shrinkage and clustering algorithm for regression). We derive error bou...
متن کاملIdentifying Groups of Strongly Correlated Variables through Smoothed Ordered Weighted L1-norms
The failure of LASSO to identify groups of correlated predictors in linear regression has sparked significant research interest. Recently, various norms [1, 2] were proposed, which can be best described as instances of ordered weighted l1 norms (OWL) [3], as an alternative to l1 regularization used in LASSO. OWL can identify groups of correlated variables but it forces the model to be constant ...
متن کاملLarge-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...
متن کاملSign-constrained least squares estimation for high-dimensional regression
Many regularization schemes for high-dimensional regression have been put forward. Most require the choice of a tuning parameter, using model selection criteria or cross-validation. We show that a simple sign-constrained least squares estimation is a very simple and effective regularization technique for a certain class of high-dimensional regression problems. The sign constraint has to be deri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014