Transport coefficients for the shear dynamo problem at small Reynolds numbers.

نویسندگان

  • Nishant K Singh
  • S Sridhar
چکیده

We build on the formulation developed in S. Sridhar and N. K. Singh [J. Fluid Mech. 664, 265 (2010)] and present a theory of the shear dynamo problem for small magnetic and fluid Reynolds numbers, but for arbitrary values of the shear parameter. Specializing to the case of a mean magnetic field that is slowly varying in time, explicit expressions for the transport coefficients α(il) and η(il) are derived. We prove that when the velocity field is nonhelical, the transport coefficient α(il) vanishes. We then consider forced, stochastic dynamics for the incompressible velocity field at low Reynolds number. An exact, explicit solution for the velocity field is derived, and the velocity spectrum tensor is calculated in terms of the Galilean-invariant forcing statistics. We consider forcing statistics that are nonhelical, isotropic, and delta correlated in time, and specialize to the case when the mean field is a function only of the spatial coordinate X(3) and time τ; this reduction is necessary for comparison with the numerical experiments of A. Brandenburg, K. H. Rädler, M. Rheinhardt, and P. J. Käpylä [Astrophys. J. 676, 740 (2008)]. Explicit expressions are derived for all four components of the magnetic diffusivity tensor η(il)(τ). These are used to prove that the shear-current effect cannot be responsible for dynamo action at small Re and Rm, but for all values of the shear parameter.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear shear-current dynamo and magnetic helicity transport in sheared turbulence

The nonlinear mean-field dynamo due to a shear-current effect in a nonhelical homogeneous turbulence with a mean velocity shear is discussed. The transport of magnetic helicity as a dynamical nonlinearity is taken into account. The shear-current effect is associated with the W×J term in the mean electromotive force, where W is the mean vorticity due to the large-scale shear motions and J is the...

متن کامل

Coherent Nonhelical Shear Dynamos Driven by Magnetic Fluctuations at Low Reynolds Numbers

Nonhelical shear dynamos are studied with a particular focus on the possibility of coherent dynamo action. The primary results—serving as a follow up to the results of Squire & Bhattacharjee—pertain to the “magnetic shearcurrent effect” as a viable mechanism to drive large-scale magnetic field generation. This effect raises the interesting possibility that the saturated state of the small-scale...

متن کامل

Magnetic Diffusivity Tensor and Dynamo Effects in Rotating and Shearing Turbulence

The turbulent magnetic diffusivity tensor is determined in the presence of rotation or shear. The question is addressed whether dynamo action from the shear–current effect can explain large-scale magnetic field generation found in simulations with shear. For this purpose a set of evolution equations for the response to imposed test fields is solved with turbulent and mean motions calculated fro...

متن کامل

Nonhelical turbulent dynamos: shocks and shear

Small scale turbulent dynamo action in compressible transonic turbulence is discussed. It is shown that the critical value of the magnetic Reynolds number displays a bimodal behavior and changes from a typical value of 35 for small Mach numbers to about 80 for larger Mach numbers. The transition between the two regimes is relatively sharp. The direct simulations are then compared with simulatio...

متن کامل

New mechanism of generation of large-scale magnetic field in a sheared turbulent plasma

A review of recent studies on a new mechanism of generation of large-scale magnetic field in a sheared turbulent plasma is presented. This mechanism is associated with the shear-current effect which is related to the W×J-term in the mean electromotive force. This effect causes the generation of the large-scale magnetic field even in a nonrotating and nonhelical homogeneous sheared turbulent con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 83 5 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2011