Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide

نویسندگان

  • Shiping Zhan
  • Yongyi Peng
  • Zhihui He
  • Boxun Li
  • Zhiquan Chen
  • Hui Xu
  • Hongjian Li
چکیده

We first report a simple nanoplasmonic sensor for both universal and slow-light sensing in a Fano resonance-based waveguide system. A theoretical model based on the coupling of resonant modes is provided for the inside physics mechanism, which is supported by the numerical FDTD results. The revealed evolution of the sensing property shows that the Fano asymmetric factor p plays an important role in adjusting the FOM of sensor, and a maximum of ~4800 is obtained when p = 1. Finally, the slow-light sensing in such nanoplasmonic sensor is also investigated. It is found that the contradiction between the sensing width with slow-light (SWS) and the relevant sensitivity can be resolved by tuning the Fano asymmetric factor p and the quality factor of the superradiant mode. The presented theoretical model and the pronounced features of this simple nanoplasmonic sensor, such as the tunable sensing and convenient integration, have significant applications in integrated plasmonic devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tunable Fano Resonance in Asymmetric MIM Waveguide Structure

A plasmonic waveguide coupled system that uses a metal-insulator-metal (MIM) waveguide with two silver baffles and a coupled ring cavity is proposed in this study. The transmission properties of the plasmonic system were investigated using the finite element method. The simulation results show a Fano profile in the transmission spectrum, which was caused by the interaction of the broadband reso...

متن کامل

Ultrasensitive Terahertz Biosensors Based on Fano Resonance of a Graphene/Waveguide Hybrid Structure

Graphene terahertz (THz) surface plasmons provide hope for developing functional devices in the THz frequency. By coupling graphene surface plasmon polaritons (SPPs) and a planar waveguide (PWG) mode, Fano resonances are demonstrated to realize an ultrasensitive terahertz biosensor. By analyzing the dispersion relation of graphene SPPs and PWG, the tunable Fano resonances in the terahertz frequ...

متن کامل

Fano Resonance Based on Metal-Insulator-Metal Waveguide-Coupled Double Rectangular Cavities for Plasmonic Nanosensors

A refractive index sensor based on metal-insulator-metal (MIM) waveguides coupled double rectangular cavities is proposed and investigated numerically using the finite element method (FEM). The transmission properties and refractive index sensitivity of various configurations of the sensor are systematically investigated. An asymmetric Fano resonance lineshape is observed in the transmission sp...

متن کامل

Gain enhanced Fano resonance in a coupled photonic crystal cavity-waveguide structure

Systems with coupled cavities and waveguides have been demonstrated as optical switches and optical sensors. To optimize the functionalities of these optical devices, Fano resonance with asymmetric and steep spectral line shape has been used. We theoretically propose a coupled photonic crystal cavity-waveguide structure to achieve Fano resonance by placing partially reflecting elements in waveg...

متن کامل

Tunable angle-independent refractive index sensor based on Fano resonance in integrated metal and graphene nanoribbons

We propose a novel mechanism to construct a tunable and ultracompact refractive index sensor by using the Fano resonance in metal-graphene hybrid nanostructure. Plasmon modes in graphene nanoribbons and waveguide resonance modes in the slits of metal strip array coexist in this system. Strong interference between the two different modes occurs when they are spectrally overlapped, resulting in a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016