Design considerations in high-sensitivity off- axis integrated cavity output spectroscopy

نویسندگان

  • e. j. moyer
  • d. s. sayres
  • f. n. keutsch
  • n. t. allen
  • j. g. anderson
چکیده

Off-axis integrated cavity output spectroscopy (OA-ICOS) has generated much interest because it potentially allows highly sensitive field measurements with robust optical alignment. We discuss here design choices involved in design of an OA-ICOS instrument and how these choices impact instrument sensitivity, using as our example the design of the Harvard ICOS isotope instrument, which demonstrates the highest reported sensitivity for mid-IR OA-ICOS (2.4×10−11 cm−1Hz−1/2 at 6.7 μm, obtained during measurements of water vapor isotopologues H2O, HDO, and H2 18O in the laboratory and onboard NASA’s WB-57 high-altitude research aircraft). We compare the sensitivity of several OAICOS instruments with differing design parameters, show how comparisons are hindered by differing definitions of instrument performance metrics, and suggest a common metric of MDAmeas, the fractional absorption equivalent to 1σ uncertainty in an actual measurement, normalized to 1 s integration. We also note that despite an emphasis on sensitivity in the literature, in the Harvard ICOS isotope instrument and likely also similar instruments, systematic errors associated with fitting of the baseline laser power are of equal importance to total measurement uncertainty.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensitivity enhancement in off-axis integrated cavity output spectroscopy.

We report on a detailed model of an improved three mirror off-axis integrated cavity output spectroscopy (OA-ICOS) setup, which re-injects the light reflected by the optical cavity. The model simulates the impact of design parameters on instrument sensitivity and can be used for any off-axis configuration. We demonstrate the application of this model for the real-time detection of ethylene with...

متن کامل

Off-axis integrated cavity output spectroscopy with a mid-infrared interband cascade laser for real-time breath ethane measurements.

Cavity-enhanced tunable diode laser absorption spectroscopy is an attractive method for measuring small concentrations of gaseous species. Ethane is a breath biomarker of lipid peroxidation initiated by reactive oxygen species. A noninvasive means of quickly quantifying oxidative stress status has the potential for broad clinical application. We present a simple, compact system using off-axis i...

متن کامل

Real-time, subsecond, multicomponent breath analysis by Optical Parametric Oscillator based Off-Axis Integrated Cavity Output Spectroscopy.

Breath analysis is an attractive field of research, due to its high potential for non-invasive medical diagnostics. Among others, laser-based absorption spectroscopy is an excellent method for the detection of gases in exhaled breath, because it can combine a high sensitivity with a good selectivity, and a high temporal resolution. Here, we use a fast-scanning continuous wave, singly-resonant O...

متن کامل

Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment.

A simple and easy to use method that allows high-finesse optical cavities to be used as absorption cells for spectroscopic purposes is presented. This method introduces a single-mode continuous-wave laser into the cavity by use of an off-axis cavity alignment geometry to eliminate systematically the resonances commonly associated with optical cavities, while preserving the absorption signal amp...

متن کامل

Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection.

Tunable-laser absorption spectroscopy in the mid-IR spectral region is a sensitive analytical technique for trace-gas quantification. The detection of nitric oxide (NO) in exhaled breath is of particular interest in the diagnosis of lower-airway inflammation associated with a number of lung diseases and illnesses. A gas analyzer based on a continuous-wave mid-IR quantum cascade laser operating ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016